Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling

Abstract

Metastasis of cancer cells involves multiple steps, including their dissociation from the primary tumor and invasion through the endothelial cell barrier to enter the circulation and finding their way to distant organ sites where they extravasate and establish metastatic lesions. Deficient contact inhibition is a hallmark of invasive cancer cells, yet surprisingly the vascular invasiveness of commonly studied cancer cell lines is regulated by the density at which cells are propagated in culture. Cells grown at high density were less effective at invading an endothelial monolayer than cells grown at low density. This phenotypic difference was also observed in a zebrafish model of vascular invasion of cancer cells after injection into the yolk sac and extravasation of cancer cells into tissues from the vasculature. The vascular invasive phenotypes were reversible. A kinome-wide RNA interference screen was used to identify drivers of vascular invasion by panning small hairpin RNA (shRNA) library-transduced noninvasive cancer cell populations on endothelial monolayers. The selection of invasive subpopulations showed enrichment of shRNAs targeting the large tumor suppressor 1 (LATS1) kinase that inhibits the activity of the transcriptional coactivator yes-associated protein (YAP) in the Hippo pathway. Depletion of LATS1 from noninvasive cancer cells restored the invasive phenotype. Complementary to this, inhibition or depletion of YAP inhibited invasion in vitro and in vivo. The vascular invasive phenotype was associated with a YAP-dependent upregulation of the cytokines IL6, IL8 and C-X-C motif ligand 1, 2 and 3. Antibody blockade of cytokine receptors inhibited invasion and confirmed that they are rate-limiting drivers that promote cancer cell vascular invasiveness and could provide therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Fidler IJ . The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003; 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen DX, Bos PD, Massagué J . Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–284.

    Article  CAS  PubMed  Google Scholar 

  3. Erez N, Coussens LM . Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int J Cancer 2011; 128: 2536–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P, Simaan M et al. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal 2011; 4: ra60.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP . Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 2010; 70: 6071–6082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Friedl P, Locker J, Sahai E, Segall JE . Classifying collective cancer cell invasion. Nat Cell Biol 2012; 14: 777–783.

    Article  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  8. Zeng Q, Hong W . The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 2008; 13: 188–192.

    Article  CAS  PubMed  Google Scholar 

  9. Tao W, Zhang S, Turenchalk GS, Stewart RA, St John MA, Chen W et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat Genet 1999; 21: 177–181.

    Article  CAS  PubMed  Google Scholar 

  10. St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 1999; 21: 182–186.

    Article  CAS  PubMed  Google Scholar 

  11. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harvey KF, Zhang X, Thomas DM . The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.

    Article  CAS  PubMed  Google Scholar 

  13. Mo J-S, Park HW, Guan K-L . The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014; 15: 642–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Varelas X . The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; vol. 141: pp 1614–1626.

    Article  Google Scholar 

  15. Nance J . Cell biology in development: getting to know your neighbor: cell polarization in early embryos. J Cell Biol 2014; vol. 206: pp 823–832.

    Article  Google Scholar 

  16. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piccolo S, Dupont S, Cordenonsi M . The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiol Rev 2014; vol. 94: pp 1287–1312.

    Article  Google Scholar 

  18. Egeblad M, Nakasone ES, Werb Z . Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010; 18: 884–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park HW, Guan K-L . Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci 2013; 34: 581–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Q, Zhang N, Gray RS, Li H, Ewald AJ, Zahnow CA et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev 2014; 28: 432–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lamar JM, Stern P, Liu H, Schindler JW, Jiang Z-G, Hynes RO . The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 2012; 109: E2441–E2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nallet-Staub F, Marsaud V, Li L, Gilbert C, Dodier S, Bataille V et al. Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J Invest Dermatol 2014; 134: 123–132.

    Article  CAS  PubMed  Google Scholar 

  23. Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE et al. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J 2014; 33: 468–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G et al. Downstream of mutant KRAS, the transcription regulator YAP Is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sc Signal 2014; 7: ra42.

    Article  Google Scholar 

  25. Greten FR . YAP1 takes over when oncogenic K-Ras slumbers. Cell 2014; 158: 11–12.

    Article  CAS  PubMed  Google Scholar 

  26. Bos PD, Zhang XH-F, Nadal C, Shu W, Gomis RR, Nguyen DX et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459: 1005–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  28. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S et al. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 2010; 123: 2332–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cross LM, Cook MA, Lin S, Chen J-N, Rubinstein AL . Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol 2003; 23: 911–912.

    Article  CAS  PubMed  Google Scholar 

  31. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 2011; 19: 387–400.

    Article  CAS  PubMed  Google Scholar 

  33. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Connell JT, Sugimoto H, Cooke VG, Macdonald BA, Mehta AI, Lebleu VS et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA 2011; 108: 16002–16007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oehlers SHB, Flores MV, Hall CJ, O'Toole R, Swift S, Crosier KE et al. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev Comp Immunol 2010; 34: 352–359.

    Article  CAS  PubMed  Google Scholar 

  36. van der Aa LM, Chadzinska M, Tijhaar E, Boudinot P, Verburg-van Kemenade BML . CXCL8 chemokines in teleost fish: two lineages with distinct expression profiles during early phases of inflammation. PLoS One 2010; 5: e12384.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  38. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 2012; 18: 1511–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N et al. Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat 2012; 135: 79–91.

    Article  CAS  PubMed  Google Scholar 

  40. Bieche I, Chavey C, Andrieu C, Busson M, Vacher S, Le Corre L et al. CXC chemokines located in the 4q21 region are upregulated in breast cancer. Endocr Relat Cancer 2007; 14: 1039–1052.

    Article  CAS  PubMed  Google Scholar 

  41. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012; 150: 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korkaya H, Kim G-I, Davis A, Malik F, Henry NL, Ithimakin S et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012; 47: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 2008; 13: 23–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rasanen K, Herlyn M . Paracrine signaling between carcinoma cells and mesenchymal stem cells generates cancer stem cell niche via epithelial-mesenchymal transition. Cancer Discov 2012; 2: 775–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH-F, Norton L et al. Tumor self-seeding by circulating cancer cells. Cell 2009; 139: 1315–1326.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C . IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 2011; 71: 5296–5306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim N-G, Koh E, Chen X, Gumbiner BM . E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 2011; 108: 11930–11935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell 2010; 19: 831–844.

    Article  CAS  PubMed  Google Scholar 

  49. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X et al. KRAS and YAP1 Converge to Regulate EMT and Tumor Survival. Cell 2014; 158: 171–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oskarsson T, Acharyya S, Zhang XH-F, Vanharanta S, Tavazoie SF, Morris PG et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011; 17: 867–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Melo SA, Kalluri R . miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol 2013; 15: 139–140.

    Article  CAS  PubMed  Google Scholar 

  52. Stoletov K, Klemke R . Catch of the day: zebrafish as a human cancer model. Oncogene 2008; 27: 4509–4520.

    Article  CAS  PubMed  Google Scholar 

  53. Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR et al. Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol 2009; 16: 712–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Al-Otaiby M, Tassi E, Schmidt MO, Chien CD, Baker T, Salas AG et al. Role of the Nuclear Receptor Coactivator AIB1/SRC-3 in Angiogenesis and Wound Healing. Am J Pathol 2012; 180: 1474–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tassi E, Mcdonnell K, Gibby KA, Tilan JU, Kim SE, Kodack DP et al. Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing. Am J Pathol 2011; 179: 2220–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oh A, List H-J, Reiter R, Mani A, Zhang Y, Gehan E et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res 2004; 64: 8299–8308.

    Article  CAS  PubMed  Google Scholar 

  57. Fereshteh MP, Tilli MT, Kim SE, Xu J, O'Malley BW, Wellstein A et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res 2008; 68: 3697–3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr Joan Massague kindly provided the MDA-MB-231 derivative cell lines used here. We thank Caroline E Laverriere for excellent assistance with the zebrafish experiments. Work was supported by NIH/NCI grant CA71508 (AW) and CA113477 (ATR) and CA51008 for zebrafish and mouse studies.

Author Contributions

GMS and AW designed the research and wrote the paper. GMS, MOS and EG performed the research. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Wellstein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, G., Schmidt, M., Yi, C. et al. Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene 34, 5879–5889 (2015). https://doi.org/10.1038/onc.2015.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.44

This article is cited by

Search

Quick links