Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mechanism-based cancer therapy: resistance to therapy, therapy for resistance

Abstract

The introduction of targeted therapy promised personalized and efficacious cancer treatments. However, although some targeted therapies have undoubtedly improved prognosis and outcome for specific cancer patients, the recurrent problem of therapeutic resistance subdues present revolutionary claims in this field. The plasticity of tumor cells leads to the development of drug resistance by distinct mechanisms: (1) mutations in the target, (2) reactivation of the targeted pathway, (3) hyperactivation of alternative pathways and (4) cross-talk with the microenvironment. Moreover, the intra-tumor heterogeneity of most tumors can also limit therapeutic response. Interestingly, the early identification of some mechanisms of resistance led to the use of alternative agents that improved clinical benefit, demonstrating that an understanding of the molecular mechanisms driving resistance to specific therapies is of paramount importance. Here we review the most generalized mechanisms of resistance to targeted therapies, together with some experimental strategies employed to identify such mechanisms. Therapeutic failure is not an option and we need to understand the dynamics of tumor adaptation in order to adequately adjust therapies; in essence ‘to fight fire with fire’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Google Scholar 

  2. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012; 486: 395–399.

    CAS  PubMed  Google Scholar 

  5. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012; 486: 400–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Haber DA, Gray NS, Baselga J . The evolving war on cancer. Cell 2011; 145: 19–24.

    CAS  PubMed  Google Scholar 

  8. Sellers WR . A blueprint for advancing genetics-based cancer therapy. Cell 2011; 147: 26–31.

    CAS  PubMed  Google Scholar 

  9. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J et al. Inferring tumor progression from genomic heterogeneity. Genome Res 2010; 20: 68–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  12. Jordan VC . Tamoxifen: catalyst for the change to targeted therapy. Eur J Cancer 2008; 44: 30–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jordan VC . Antiestrogenic and antitumor properties of tamoxifen in laboratory animals. Cancer Treat Rep 1976; 60: 1409–1419.

    CAS  PubMed  Google Scholar 

  14. Nicholson RI, Golder MP . The effect of synthetic anti-oestrogens on the growth and biochemistry of rat mammary tumours. Eur J Cancer 1975; 11: 571–579.

    CAS  PubMed  Google Scholar 

  15. Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–1717.

    Google Scholar 

  16. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  PubMed  Google Scholar 

  17. Hochhaus A, O'Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23: 1054–1061.

    CAS  PubMed  Google Scholar 

  18. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    CAS  PubMed  Google Scholar 

  19. Gambacorti-Passerini C, Antolini L, Mahon FX, Guilhot F, Deininger M, Fava C et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst 2011; 103: 553–561.

    CAS  PubMed  Google Scholar 

  20. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355: 2733–2743.

    Article  CAS  PubMed  Google Scholar 

  21. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, Alanko T, Kataja V, Asola R et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 2006; 354: 809–820.

    CAS  PubMed  Google Scholar 

  22. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659–1672.

    CAS  PubMed  Google Scholar 

  23. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    CAS  PubMed  Google Scholar 

  24. Galizia G, Lieto E, De Vita F, Orditura M, Castellano P, Troiani T et al. Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 2007; 26: 3654–3660.

    CAS  PubMed  Google Scholar 

  25. Gridelli C, Bareschino MA, Schettino C, Rossi A, Maione P, Ciardiello F . Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist 2007; 12: 840–849.

    CAS  PubMed  Google Scholar 

  26. Sridhar SS, Seymour L, Shepherd FA . Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 2003; 4: 397–406.

    CAS  PubMed  Google Scholar 

  27. Vecchione L, Jacobs B, Normanno N, Ciardiello F, Tejpar S . EGFR-targeted therapy. Exp Cell Res 2011; 317: 2765–2771.

    CAS  PubMed  Google Scholar 

  28. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yauch RL, Settleman J . Recent advances in pathway-targeted cancer drug therapies emerging from cancer genome analysis. Curr Opin Genet Dev 2012; 22: 45–49.

    CAS  PubMed  Google Scholar 

  30. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New Engl J Med 2010; 363: 1693–1703.

    CAS  PubMed  Google Scholar 

  31. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    CAS  PubMed  Google Scholar 

  32. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009; 9: 550–562.

    Article  CAS  PubMed  Google Scholar 

  33. Miller TW, Rexer BN, Garrett JT, Arteaga CL . Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 2011; 13: 224.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodon J, Dienstmann R, Serra V, Tabernero J . Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013; 10: 143–153.

    CAS  PubMed  Google Scholar 

  35. Beaver JA, Park BH . The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol 2012; 8: 651–657.

    CAS  PubMed  Google Scholar 

  36. Dhillon S . Everolimus in combination with exemestane: a review of its use in the treatment of patients with postmenopausal hormone receptor-positive, HER2-negative advanced breast cancer. Drugs 2013; 73: 475–485.

    CAS  PubMed  Google Scholar 

  37. Baselga J, Campone M, Piccart M, Burris HA III, Rugo HS, Sahmoud T et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012; 366: 520–529.

    CAS  PubMed  Google Scholar 

  38. Karvela M, Helgason GV, Holyoake TL . Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Review Anticancer Ther 2012; 12: 381–392.

    CAS  Google Scholar 

  39. Nardi V, Azam M, Daley GQ . Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr Opin Hematol 2004; 11: 35–43.

    CAS  PubMed  Google Scholar 

  40. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    CAS  PubMed  Google Scholar 

  41. Quintas-Cardama A, Jabbour EJ . Considerations for early switch to nilotinib or dasatinib in patients with chronic myeloid leukemia with inadequate response to first-line imatinib. Leukemia Res 2013; 37: 487–495.

    CAS  Google Scholar 

  42. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005; 2: e73.

    PubMed  PubMed Central  Google Scholar 

  43. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, Griffin JD et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res 2004; 64: 6385–6389.

    CAS  PubMed  Google Scholar 

  44. Blencke S, Zech B, Engkvist O, Greff Z, Orfi L, Horvath Z et al. Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem Biol 2004; 11: 691–701.

    CAS  PubMed  Google Scholar 

  45. Janne PA, Gray N, Settleman J . Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov 2009; 8: 709–723.

    CAS  PubMed  Google Scholar 

  46. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA 2009; 106: 20411–20416.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ercan D, Zejnullahu K, Yonesaka K, Xiao Y, Capelletti M, Rogers A et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene 2010; 29: 2346–2356.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3: 75ra26.

    PubMed  PubMed Central  Google Scholar 

  49. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA . BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 2010; 3: ra84.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Alba E, Albanell J, de la Haba J, Barnadas A, Calvo L, Sanchez-Rovira P et al. Trastuzumab or lapatinib with standard chemotherapy for HER2-positive breast cancer: results from the GEICAM/2006-14 trial. Br J Cancer 2014; 110: 1139–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ . Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Practice Oncol 2006; 3: 269–280.

    CAS  Google Scholar 

  52. Nielsen DL, Kumler I, Palshof JA, Andersson M . Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Breast 2013; 22: 1–12.

    PubMed  Google Scholar 

  53. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117–127.

    CAS  PubMed  Google Scholar 

  54. Chandarlapaty S, Sakr RA, Giri D, Patil S, Heguy A, Morrow M et al. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res 2012; 18: 6784–6791.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS et al. PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 2010; 177: 1647–1656.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395–402.

    CAS  PubMed  Google Scholar 

  57. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 2008; 68: 9221–9230.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer 2012; 106: 1367–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang L, Zhang Q, Zhang J, Sun S, Guo H, Jia Z et al. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer 2011; 11: 248.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008; 68: 8022–8030.

    CAS  PubMed  Google Scholar 

  61. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 2007; 13: 5883–5888.

    CAS  PubMed  Google Scholar 

  62. Andre F, Campone M, O'Regan R, Manlius C, Massacesi C, Sahmoud T et al. Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol 2010; 28: 5110–5115.

    CAS  PubMed  Google Scholar 

  63. Barok M, Tanner M, Koninki K, Isola J . Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res 2011; 13: R46.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX . Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat 2011; 128: 347–356.

    CAS  PubMed  Google Scholar 

  65. Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 2011; 29: 398–405.

    CAS  PubMed  Google Scholar 

  66. Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 2010; 28: 2698–2704.

    CAS  PubMed  Google Scholar 

  67. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494: 251–255.

    CAS  PubMed  Google Scholar 

  68. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol 2011; 226: 2762–2781.

    CAS  PubMed  Google Scholar 

  69. De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N . The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 2012; 16: S17–S27.

    CAS  PubMed  Google Scholar 

  70. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2012; 3: 1068–1111.

    PubMed  PubMed Central  Google Scholar 

  71. Burris HA III . Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol 2013; 71: 829–842.

    CAS  PubMed  Google Scholar 

  72. Hafsi S, Pezzino FM, Candido S, Ligresti G, Spandidos DA, Soua Z et al. Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (review). Int J Oncol 2012; 40: 639–644.

    CAS  PubMed  Google Scholar 

  73. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta 2007; 1773: 1263–1284.

    CAS  PubMed  Google Scholar 

  74. Grant S . Cotargeting survival signaling pathways in cancer. J Clin Invest 2008; 118: 3003–3006.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 2008; 118: 3051–3064.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 2011; 30: 2547–2557.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A . Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther 2008; 7: 307–315.

    PubMed  Google Scholar 

  79. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek VM et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res 2013; 73: 276–284.

    CAS  PubMed  Google Scholar 

  80. Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C et al. Rapid Induction of Apoptosis by PI3K Inhibitors Is Dependent upon Their Transient Inhibition of RAS-ERK Signaling. Cancer Discov 2014; 4: 334–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 2009; 69: 4286–4293.

    CAS  PubMed  Google Scholar 

  82. Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, Jung K et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 2009; 15: 4649–4664.

    CAS  PubMed  Google Scholar 

  83. Hoeflich KP, Merchant M, Orr C, Chan J, Den Otter D, Berry L et al. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res 2012; 72: 210–219.

    CAS  PubMed  Google Scholar 

  84. Legrier ME, Yang CP, Yan HG, Lopez-Barcons L, Keller SM, Perez-Soler R et al. Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 2007; 67: 11300–11308.

    CAS  PubMed  Google Scholar 

  85. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19: 58–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Muller U et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 2012; 22: 796–811.

    CAS  PubMed  Google Scholar 

  88. Britschgi A, Radimerski T, Bentires-Alj M . Targeting PI3K, HER2 and the IL-8/JAK2 axis in metastatic breast cancer: which combination makes the whole greater than the sum of its parts?. Drug Resist Updat 2013; 16: 68–72.

    CAS  PubMed  Google Scholar 

  89. Liu P, Cheng H, Santiago S, Raeder M, Zhang F, Isabella A et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med 2011; 17: 1116–1120.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Muellner MK, Uras IZ, Gapp BV, Kerzendorfer C, Smida M, Lechtermann H et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 2011; 7: 787–793.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S et al. Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012; 18: 892–901.

    CAS  PubMed  Google Scholar 

  92. Fang H, Declerck YA . Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 2013; 73: 4965–4977.

    CAS  PubMed  Google Scholar 

  93. Junttila MR, de Sauvage FJ . Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501: 346–354.

    CAS  PubMed  Google Scholar 

  94. Meads MB, Gatenby RA, Dalton WS . Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009; 9: 665–674.

    CAS  PubMed  Google Scholar 

  95. Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ et al. Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 2004; 104: 2149–2154.

    CAS  PubMed  Google Scholar 

  96. Park CC, Zhang HJ, Yao ES, Park CJ, Bissell MJ . Beta1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer research 2008; 68: 4398–4405.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Damiano JS, Hazlehurst LA, Dalton WS . Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia 2001; 15: 1232–1239.

    CAS  PubMed  Google Scholar 

  98. Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC et al. Beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res 2011; 13: R84.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012; 21: 227–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schwartz MA, McRoberts K, Coyner M, Andarawewa KL, Frierson HF Jr, Sanders JM et al. Integrin agonists as adjuvants in chemotherapy for melanoma. Clinical Cancer Res 2008; 14: 6193–6197.

    CAS  Google Scholar 

  101. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487: 505–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Harbinski F, Craig VJ, Sanghavi S, Jeffery D, Liu L, Sheppard KA et al. Rescue screens with secreted proteins reveal compensatory potential of receptor tyrosine kinases in driving cancer growth. Cancer Discov 2012; 2: 948–959.

    CAS  PubMed  Google Scholar 

  103. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    CAS  PubMed  Google Scholar 

  105. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467: 1109–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Swanton C . Intratumor heterogeneity: evolution through space and time. Cancer Res 2012; 72: 4875–4882.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Klein CA . Selection and adaptation during metastatic cancer progression. Nature 2013; 501: 365–372.

    CAS  PubMed  Google Scholar 

  109. Vignot S, Besse B, Andre F, Spano JP, Soria JC . Discrepancies between primary tumor and metastasis: a literature review on clinically established biomarkers. Crit Rev Oncol Hematol 2012; 84: 301–313.

    PubMed  Google Scholar 

  110. Vignot S, Frampton GM, Soria JC, Yelensky R, Commo F, Brambilla C et al. Next-generation sequencing reveals high concordance of recurrent somatic alterations between primary tumor and metastases from patients with non-small-cell lung cancer. J Clin Oncol 2013; 31: 2167–2172.

    CAS  PubMed  Google Scholar 

  111. Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, Geyer FC et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 2012; 22: 196–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jin K, Lan H, Cao F, Han N, Xu Z, Li G et al. Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases. Int J Oncol 2012; 41: 583–588.

    CAS  PubMed  Google Scholar 

  113. Bedard PL, Hansen AR, Ratain MJ, Siu LL . Tumour heterogeneity in the clinic. Nature 2013; 501: 355–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Janku F . Tumor heterogeneity in the clinic: is it a real problem? Ther Adv Med Oncol 2014; 6: 43–51.

    PubMed  PubMed Central  Google Scholar 

  115. Bousquet G, Feugeas JP, Ferreira I, Vercellino L, Jourdan N, Bertheau P et al. Individual xenograft as a personalized therapeutic resort for women with metastatic triple-negative breast carcinoma. Breast Cancer Res 2014; 16: 401.

    PubMed  PubMed Central  Google Scholar 

  116. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 2011; 10: 1311–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497: 108–112.

    CAS  PubMed  Google Scholar 

  118. Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA . Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 2005; 436: 272–276.

    CAS  PubMed  Google Scholar 

  119. Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 2010; 330: 1104–1107.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen L, Stuart L, Ohsumi TK, Burgess S, Varshney GK, Dastur A et al. Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics. BMC Cancer 2013; 13: 93.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA . Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 2005; 436: 221–226.

    CAS  PubMed  Google Scholar 

  122. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clini Cancer Res 2007; 13: 3989–3998.

    CAS  Google Scholar 

  123. Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res 2014; 74: 1272–1283.

    CAS  PubMed  Google Scholar 

  124. Rahrmann EP, Watson AL, Keng VW, Choi K, Moriarity BS, Beckmann DA et al. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 2013; 45: 756–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gillies RJ, Verduzco D, Gatenby RA . Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012; 12: 487–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li F, Zhao C, Wang L . Molecular-targeted agents combination therapy for cancer: Developments and potentials. Int J Cancer 2014; 134: 1257–1269.

    CAS  PubMed  Google Scholar 

  127. Aftimos PG, Wiedig M, Langouo Fontsa M, Awada A, Ghanem G, Journe F . Sequential use of protein kinase inhibitors potentiates their toxicity to melanoma cells: a rationale to combine targeted drugs based on protein expression inhibition profiles. Int J Oncol 2013; 43: 919–926.

    CAS  PubMed  Google Scholar 

  128. Hongisto V, Jernstrom S, Fey V, Mpindi JP, Kleivi Sahlberg K, Kallioniemi O et al. High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. PLoS One 2013; 8: e77232.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ho WJ, Pham EA, Kim JW, Ng CW, Kim JH, Kamei DT et al. Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci 2010; 101: 2637–2643.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of MB-A is supported by the Novartis Research Foundation, the European Research Council (ERC starting grant 243211-PTPsBDC), the Swiss Cancer League, the Swiss national science foundation and the Krebsliga Beider Basel. PR recevied a ‘Novartis presidential postdoc fellowship’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bentires-Alj.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, P., Bentires-Alj, M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34, 3617–3626 (2015). https://doi.org/10.1038/onc.2014.314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.314

This article is cited by

Search

Quick links