Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1

Abstract

The majority of patients with lung cancer present with metastatic disease. Chronic inflammation and subsequent activation of nuclear factor-κB (NF-κB) have been associated with the development of cancers. The RelA/p65 subunit of NF-κB is typically associated with transcriptional activation. In this report we show that RelA/p65 can function as an active transcriptional repressor through enhanced methylation of the BRMS1 (breast cancer metastasis suppressor 1) metastasis suppressor gene promoter via direct recruitment of DNMT-1 (DNA (cytosine-5)-methyltransferase 1) to chromatin in response to tumor necrosis factor (TNF). TNF-mediated phosphorylation of S276 on RelA/p65 is required for RelA/p65–DNMT-1 interactions, chromatin loading of DNMT-1 and subsequent BRMS1 promoter methylation and transcriptional repression. The ability of RelA/p65 to function as an active transcriptional repressor is promoter specific, as the NF-κB-regulated gene cIAP2 (cellular inhibitor of apoptosis 2) is transcriptionally activated whereas BRMS1 is repressed under identical conditions. Small-molecule inhibition of either of the minimal interacting domains between RelA/p65–DNMT-1 and RelA/p65–BRMS1 promoter abrogates BRMS1 methylation and its transcriptional repression. The ability of RelA/p65 to directly recruit DNMT-1 to chromatin, resulting in promoter-specific methylation and transcriptional repression of tumor metastasis suppressor gene BRMS1, highlights a new mechanism through which NF-κB can regulate metastatic disease, and offers a potential target for newer-generation epigenetic oncopharmaceuticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Baldwin Jr AS . (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649–683.

    Article  CAS  Google Scholar 

  • Bestor TH . (2000). The DNA methyltransferases of mammals. Hum Mol Genet 9: 2395–2402.

    Article  CAS  Google Scholar 

  • Bobrovnikova-Marjon EV, Marjon PL, Barbash O, Vander Jagt DL, Abcouwer SF . (2004). Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res 64: 4858–4869.

    Article  CAS  Google Scholar 

  • Bours V, Dejardin E, Goujon-Letawe F, Merville MP, Castronovo V . (1994). The NF-kappa B transcription factor and cancer: high expression of NF-kappa B- and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 47: 145–149.

    Article  CAS  Google Scholar 

  • Campbell KJ, Rocha S, Perkins ND . (2004). Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol Cell 13: 853–865.

    Article  CAS  Google Scholar 

  • Ceribelli M, Dolfini D, Merico D, Gatta R, Vigano AM, Pavesi G et al. (2008). The histone-like NF-Y is a bifunctional transcription factor. Mol Cell Biol 28: 2047–2058.

    Article  CAS  Google Scholar 

  • Chen C, Edelstein LC, Gelinas C . (2000a). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20: 2687–2695.

    Article  Google Scholar 

  • Chen FE, Huang DB, Chen YQ, Ghosh G . (1998). Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391: 410–413.

    Article  CAS  Google Scholar 

  • Chen LF, Williams SA, Mu Y, Nakano H, Duerr JM, Buckbinder L et al. (2005). NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25: 7966–7975.

    Article  CAS  Google Scholar 

  • Chen YQ, Sengchanthalangsy LL, Hackett A, Ghosh G . (2000b). NF-kappaB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. Structure 8: 419–428.

    Article  CAS  Google Scholar 

  • Coussens LM, Werb Z . (2002). Inflammation and cancer. Nature 420: 860–867.

    Article  CAS  Google Scholar 

  • Denlinger CE, Rundall BK, Jones DR . (2004). Modulation of antiapoptotic cell signaling pathways in non-small cell lung cancer: the role of NF-kappaB. Semin Thorac Cardiovasc Surg 16: 28–39.

    Article  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295: 1079–1082.

    Article  CAS  Google Scholar 

  • Dong J, Jimi E, Zhong H, Hayden MS, Ghosh S . (2008). Repression of gene expression by unphosphorylated NF-kappaB p65 through epigenetic mechanisms. Genes Dev 22: 1159–1173.

    Article  CAS  Google Scholar 

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.

    Article  CAS  Google Scholar 

  • Greten FR, Karin M . (2004). The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 206: 193–199.

    Article  CAS  Google Scholar 

  • Helbig G, Christopherson II KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD et al. (2003). NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278: 21631–21638.

    Article  CAS  Google Scholar 

  • Hicks DG, Yoder BJ, Short S, Tarr S, Prescott N, Crowe JP et al. (2006). Loss of breast cancer metastasis suppressor 1 protein expression predicts reduced disease-free survival in subsets of breast cancer patients. Clin Cancer Res 12: 6702–6708.

    Article  CAS  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW . (2006). IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26: 457–471.

    Article  CAS  Google Scholar 

  • Hodge DR, Xiao W, Peng B, Cherry JC, Munroe DJ, Farrar WL . (2005). Enforced expression of superoxide dismutase 2/manganese superoxide dismutase disrupts autocrine interleukin-6 stimulation in human multiple myeloma cells and enhances dexamethasone-induced apoptosis. Cancer Res 65: 6255–6263.

    Article  CAS  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    Article  CAS  Google Scholar 

  • Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H et al. (2004). NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114: 569–581.

    Article  CAS  Google Scholar 

  • Jones DR, Broad RM, Madrid LV, Baldwin Jr AS, Mayo MW . (2000). Inhibition of NF-kappaB sensitizes non-small cell lung cancer cells to chemotherapy-induced apoptosis. Ann Thorac Surg 70: 930–936; discussion 936–937.

    Article  CAS  Google Scholar 

  • Karin M, Greten FR . (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.

    Article  CAS  Google Scholar 

  • Kim S, Domon-Dell C, Kang J, Chung DH, Freund JN, Evers BM . (2004). Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J Biol Chem 279: 4285–4291.

    Article  CAS  Google Scholar 

  • Kouba DJ, Chung KY, Nishiyama T, Vindevoghel L, Kon A, Klement JF et al. (1999). Nuclear factor-kappa B mediates TNF-alpha inhibitory effect on alpha 2(I) collagen (COL1A2) gene transcription in human dermal fibroblasts. J Immunol 162: 4226–4234.

    CAS  PubMed  Google Scholar 

  • Liu Y, Denlinger CE, Rundall BK, Smith PW, Jones DR . (2006a). Suberoylanilide hydroxamic acid induces Akt-mediated phosphorylation of p300, which promotes acetylation and transcriptional activation of RelA/p65. J Biol Chem 281: 31359–31368.

    Article  CAS  Google Scholar 

  • Liu Y, Smith PW, Jones DR . (2006b). Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 26: 8683–8696.

    Article  CAS  Google Scholar 

  • Mayo MW, Baldwin AS . (2000). The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 1470: M55–M62.

    CAS  PubMed  Google Scholar 

  • Meehan WJ, Welch DR . (2003). Breast cancer metastasis suppressor 1: update. Clin Exp Metastasis 20: 45–50.

    Article  CAS  Google Scholar 

  • Mottet D, Pirotte S, Lamour V, Hagedorn M, Javerzat S, Bikfalvi A et al. (2009). HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene 28: 243–256.

    Article  CAS  Google Scholar 

  • Nagji AS, Liu Y, Stelow EB, Stukenborg GJ, Jones DR . (2010). BRMS1 transcriptional repression correlates with CpG island methylation and advanced pathological stage in non-small cell lung cancer. J Pathol 221: 229–237.

    Article  CAS  Google Scholar 

  • Neumann M, Grieshammer T, Chuvpilo S, Kneitz B, Lohoff M, Schimpl A et al. (1995). RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A. EMBO J 14: 1991–2004.

    Article  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E . (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    Article  CAS  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466.

    Article  CAS  Google Scholar 

  • Puto LA, Reed JC . (2008). Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes Dev 22: 998–1010.

    Article  CAS  Google Scholar 

  • Romano A, Adriaens M, Kuenen S, Delvoux B, Dunselman G, Evelo C et al. (2010). Identification of novel ER-alpha target genes in breast cancer cells: gene-and cell-selective co-regulator recruitment at target promoters determines the response to 17beta-estradiol and tamoxifen. Mol Cell Endocrinol 314: 90–100.

    Article  CAS  Google Scholar 

  • Sankpal NV, Willman MW, Fleming TP, Mayfield JD, Gillanders WE . (2009). Transcriptional repression of epithelial cell adhesion molecule contributes to p53 control of breast cancer invasion. Cancer Res 69: 753–757.

    Article  CAS  Google Scholar 

  • Schwarze SR, Dowdy SF . (2000). In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21: 45–48.

    Article  CAS  Google Scholar 

  • Shaw J, Zhang T, Rzeszutek M, Yurkova N, Baetz D, Davie JR et al. (2006). Transcriptional silencing of the death gene BNIP3 by cooperative action of NF-kappaB and histone deacetylase 1 in ventricular myocytes. Circ Res 99: 1347–1354.

    Article  CAS  Google Scholar 

  • Smith PW, Liu Y, Siefert SA, Moskaluk CA, Petroni GR, Jones DR . (2009). Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer. Cancer Lett 276: 196–203.

    Article  CAS  Google Scholar 

  • Snyder M, Huang XY, Zhang JJ . (2010). Stat3 directly controls the expression of Tbx5, Nkx2.5, and GATA4 and is essential for cardiomyocyte differentiation of P19CL6 cells. J Biol Chem 285: 23639–23646.

    Article  CAS  Google Scholar 

  • Suzuki MM, Bird A . (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465–476.

    Article  CAS  Google Scholar 

  • Takada Y, Murakami A, Aggarwal BB . (2005). Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 24: 6957–6969.

    Article  CAS  Google Scholar 

  • Ushijima T, Okochi-Takada E . (2005). Aberrant methylations in cancer cells: where do they come from? Cancer Sci 96: 206–211.

    Article  CAS  Google Scholar 

  • Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G . (2003). Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22: 1313–1324.

    Article  CAS  Google Scholar 

  • Wang CY, Mayo MW, Baldwin Jr AS . (1996). TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274: 784–787.

    Article  CAS  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS . (1998). NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683.

    Article  CAS  Google Scholar 

  • Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T . (2006). Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res 66: 10517–10524.

    Article  CAS  Google Scholar 

  • Xia D, Srinivas H, Ahn YH, Sethi G, Sheng X, Yung WK et al. (2007). Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF kappa B-dependent pathway. J Biol Chem 282: 3507–3519.

    Article  CAS  Google Scholar 

  • Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA . (2005). STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA 102: 6948–6953.

    Article  CAS  Google Scholar 

  • Zhang Z, Yamashita H, Toyama T, Yamamoto Y, Kawasoe T, Iwase H . (2006). Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res 12: 6410–6414.

    Article  CAS  Google Scholar 

  • Zhong H, May MJ, Jimi E, Ghosh S . (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9: 625–636.

    Article  CAS  Google Scholar 

  • Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S . (1997). The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89: 413–424.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants R01 CA136705 (to DRJ), R01 CA104397 (to MWM) and R01 CA132580 (to MWM). In addition, this project was supported in part by a gift provided to the University of Virginia by Philip Morris USA. The review and approval process was overseen by an independent National External Advisory Board without any affiliation with the University, Philip Morris USA or any other tobacco company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Jones.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Mayo, M., Nagji, A. et al. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene 31, 1143–1154 (2012). https://doi.org/10.1038/onc.2011.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.308

Keywords

This article is cited by

Search

Quick links