Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Epigenetic regulation of HIF-1α in renal cancer cells involves HIF-1α/2α binding to a reverse hypoxia-response element

Abstract

Inactivation of the von Hippel–Lindau (VHL) tumor suppressor gene underlies the majority of sporadic clear cell renal cell carcinomas (CCRCCs) and is also responsible for the hereditary VHL cancer syndrome. VHL loss of function results in constitutive stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) due to insufficient proteolysis in the presence of oxygen. This activates multiple genes relevant to tumorigenesis, allowing cells to acquire further mutations and undergo malignant transformation. However, the specific role of each HIF-α subunit in CCRCC tumorigenesis is not yet well understood. The current paradigm supports that in the first stages of CCRCC formation the stabilization of HIF-1α is dominant and this limits proliferation, but later on HIF-2α increases and this induces a more aggressive cell behavior. Understanding how this transition happens is highly relevant, as it may provide novel ways to treat these cancers. Here, we show that VHL inactivation in CCRCC cells results in HIF-1α/2α-dependent downregulation of HIF-1α mRNA through direct binding of either subunit to a reverse hypoxia-response element in the HIF-1α proximal promoter. This binding activates a series of repressive histone modification marks including histone 3 lysine 27 trimethylation (H3K27me3) to make the changes stable, and if overturned reduces CCRCC cell proliferation due to excessive HIF-1α expression level. Our findings thus help understand how HIF-α subunits influence each other and also reinforce the idea that epigenetic mechanisms are a key step of CCRCC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aragones J, Jones DR, Martin S, San Juan MA, Alfranca A, Vidal F et al. (2001). Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J Biol Chem 276: 10548–10555.

    Article  CAS  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570–2581.

    Article  CAS  Google Scholar 

  • Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P . (2008). The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283: 36542–36552.

    Article  CAS  Google Scholar 

  • Christophersen NS, Helin K . (2010). Epigenetic control of embryonic stem cell fate. J Exp Med 207: 2287–2295.

    Article  CAS  Google Scholar 

  • Cory S, Adams JM . (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647–656.

    Article  CAS  Google Scholar 

  • Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463: 360–363.

    Article  CAS  Google Scholar 

  • Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM . (2006). The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res 66: 3688–3698.

    Article  CAS  Google Scholar 

  • Esteban MA, Harten SK, Tran MG, Maxwell PH . (2006a). Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol 17: 1801–1806.

    Article  CAS  Google Scholar 

  • Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A et al. (2006b). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66: 3567–3575.

    Article  CAS  Google Scholar 

  • Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE et al. (2008). HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14: 435–446.

    Article  CAS  Google Scholar 

  • Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K et al. (2001). Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8: 367–376.

    Article  CAS  Google Scholar 

  • Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W . (2003). Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 5: 64–70.

    Article  CAS  Google Scholar 

  • Jeong CH, Lee HJ, Cha JH, Kim JH, Kim KR, Yoon DK et al. (2007). Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. J Biol Chem 282: 13672–13679.

    Article  CAS  Google Scholar 

  • Kaelin Jr WG . (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2: 673–682.

    Article  CAS  Google Scholar 

  • Kaelin Jr WG . (2008). The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8: 865–873.

    Article  CAS  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23: 1949–1956.

    Article  CAS  Google Scholar 

  • Koslowski M, Luxemburger U, Tureci O, Sahin U . (2011). Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1alpha. Oncogene 30: 876–882.

    Article  CAS  Google Scholar 

  • Kothari S, Cizeau J, McMillan-Ward E, Israels SJ, Bailes M, Ens K et al. (2003). BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22: 4734–4744.

    Article  CAS  Google Scholar 

  • Lee KJ, Lee KY, Lee YM . (2010). Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter. Biochim Biophys Acta 1803: 608–616.

    Article  CAS  Google Scholar 

  • Lin Q, Cong X, Yun Z . (2011). Differential hypoxic regulation of hypoxia-inducible factors 1α and 2α. Mol Cancer Res (doi:10.115811541-7786.MCR-11-0053).

  • Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM et al. (2002). HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1: 459–468.

    Article  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  CAS  Google Scholar 

  • Mazure NM, Chauvet C, Bois-Joyeux B, Bernard MA, Nacer-Cherif H, Danan JL . (2002). Repression of alpha-fetoprotein gene expression under hypoxic conditions in human hepatoma cells: characterization of a negative hypoxia response element that mediates opposite effects of hypoxia inducible factor-1 and c-Myc. Cancer Res 62: 1158–1165.

    CAS  PubMed  Google Scholar 

  • Menrad H, Werno C, Schmid T, Copanaki E, Deller T, Dehne N et al. (2010). Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology 51: 2183–2192.

    Article  CAS  Google Scholar 

  • Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H et al. (2011). Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30: 1390–1401.

    Article  CAS  Google Scholar 

  • Narravula S, Colgan SP . (2001). Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 166: 7543–7548.

    Article  CAS  Google Scholar 

  • Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landazuri MO et al. (2005). Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 390: 189–197.

    Article  CAS  Google Scholar 

  • Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ et al. (2008). Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416: 387–394.

    Article  CAS  Google Scholar 

  • Pugh CW, Ratcliffe PJ . (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684.

    Article  CAS  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–5686.

    Article  CAS  Google Scholar 

  • Roberts AM, Watson IR, Evans AJ, Foster DA, Irwin MS, Ohh M . (2009). Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res 69: 9056–9064.

    Article  CAS  Google Scholar 

  • Schofield CJ, Ratcliffe PJ . (2004). Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5: 343–354.

    Article  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G . (2007). Genome regulation by polycomb and trithorax proteins. Cell 128: 735–745.

    Article  CAS  Google Scholar 

  • Semenza GL . (2001). HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3.

    Article  CAS  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  Google Scholar 

  • Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. (2011). Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469: 539–542.

    Article  CAS  Google Scholar 

  • Wenger RH, Stiehl DP, Camenisch G . (2005). Integration of oxygen signaling at the consensus HRE. Sci STKE 2005: re12.

    PubMed  Google Scholar 

  • Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X et al. (2010). VHL inactivation induces HEF1 and Aurora kinase A. J Am Soc Nephrol 21: 2041–2046.

    Article  CAS  Google Scholar 

  • Yoo CB, Jones PA . (2006). Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5: 37–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up funding from the Guangzhou Institutes of Biomedicine and Health and the Chinese Academy of Sciences Grant KSCX2-YW-R-244 to MAE. We thank Dr Duanqing Pei for his constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Esteban.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Wang, B., Xu, Y. et al. Epigenetic regulation of HIF-1α in renal cancer cells involves HIF-1α/2α binding to a reverse hypoxia-response element. Oncogene 31, 1065–1072 (2012). https://doi.org/10.1038/onc.2011.305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.305

Keywords

This article is cited by

Search

Quick links