Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells

Abstract

Somatotrophs produce growth hormone (GH) and are the most abundant secretory cells of the pituitary. Somatotrophs express the transcription factor Pit-1 and the dependence receptor RET, its co-receptor GFRa1 and ligand GDNF. Pit-1 is a transcription factor essential for somatotroph proliferation and differentiation and for GH expression. GDNF represses excess Pit-1 expression preventing excess GH. In the absence of GDNF, RET behaves as a dependence receptor, becomes intracellularly processed and induces strong Pit-1 expression leading to p53 accumulation and apoptosis. How accumulation of Pit-1 leads to p53 expression is unknown. We have unveiled the relationship of Pit-1 with the p19Arf gene. There is a parallel correlation of RET processing, Pit-1 increase and ARF protein and mRNA expression. Interfering the pathway with RET, Pit-1 or p19Arf siRNA blocked apoptosis. We have found a Pit-1 DNA-binding element within the ARF promoter. Pit-1 directly regulates the CDKN2A locus and binds to the p19Arft promoter inducing p19Arf gene expression. The Pit-1-binding element is conserved in rodents and humans. RET/Pit-1 induces p19Arf/p53 and apoptosis not only in a somatotroph cell line but also in primary cultures of pituitary somatotrophs, where ARF siRNA interference also blocks p53 and apoptosis. Analyses of the somatotrophs in whole pituitaries supported the above findings. Thus Pit-1, a differentiation factor, activates the oncogene-induced apoptosis (OIA) pathway as oncogenes exerting a tight control in somatotrophs to prevent the disease due to excess of GH (insulin-resistance, metabolic disease, acromegaly).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AP:

anterior pituitary

GH:

growth hormone

OIA:

oncogene-induced apoptosis

RET-S or RET-L:

RET tyrosine kinase receptor short isoform or long isoform

References

  • Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL et al. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395: 124–125.

    Article  CAS  Google Scholar 

  • Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M et al. (2000). The RET proto-oncogene induces apoptosis: a novel mechanism for hirschsprung disease. EMBO J 19: 4056–4063.

    Article  CAS  Google Scholar 

  • Bravo SB, Garcia-Rendueles ME, Perez-Romero S, Cameselle-Teijeiro J, Rodrigues JS, Barreiro F et al. (2010). Expression of exogenous proteins and short hairpin RNAs in human primary thyrocytes. Anal Biochem 400: 219–228.

    Article  CAS  Google Scholar 

  • Bravo SB, Pampin S, Cameselle-Teijeiro J, Carneiro C, Dominguez F, Barreiro F et al. (2003). TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation. Oncogene 22: 7819–7830.

    Article  CAS  Google Scholar 

  • Canibano C, Rodriguez NL, Saez C, Tovar S, Garcia-Lavandeira M, Borrello MG et al. (2007). The dependence receptor ret induces apoptosis in somatotrophs through a pit-1/p53 pathway, preventing tumor growth. EMBO J 26: 2015–2028.

    Article  CAS  Google Scholar 

  • Carneiro C, Alvarez CV, Zalvide J, Vidal A, Dominguez F . (1998). TGF-beta1 actions on FRTL-5 cells provide a model for the physiological regulation of thyroid growth. Oncogene 16: 1455–1465.

    Article  CAS  Google Scholar 

  • Castrillo JL, Theill LE, Karin M . (1991). Function of the homeodomain protein GHF1 in pituitary cell proliferation. Science 253: 197–199.

    Article  CAS  Google Scholar 

  • Chen D, Shan J, Zhu WG, Qin J, Gu W . (2010). Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature 464: 624–627.

    Article  CAS  Google Scholar 

  • Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S . (2005). Pituitary hypoplasia in pttg−/− mice is protective for rb+/− pituitary tumorigenesis. Mol Endocrinol 19: 2371–2379.

    Article  CAS  Google Scholar 

  • Chesnokova V, Yu R, Ben-Shlomo A, Shlomo M . (2008a) In: Melmed S, Rochefort H, Chanson P, Christen Y (eds). Hormonal Control of Cell Cycle. Springer: Berlin Heidelberg, pp 83–87.

    Book  Google Scholar 

  • Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S et al. (2008b). p21(Cip1) restrains pituitary tumor growth. Proc Natl Acad Sci USA 105: 17498–17503.

    Article  CAS  Google Scholar 

  • Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K et al. (2007). Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Res 67: 10564–10572.

    Article  CAS  Google Scholar 

  • Clayton PE, Banerjee I, Murray PG, Renehan AG . (2011). Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat Rev Endocrinol 7: 11–24.

    Article  CAS  Google Scholar 

  • Colao A, Ochoa AS, Auriemma RS, Faggiano A, Pivonello R, Lombardi G . (2010). Pituitary carcinomas. Front Horm Res 38: 94–108.

    Article  Google Scholar 

  • Coya R, Alvarez CV, Perez F, Gianzo C, Dieguez C . (1999). Effects of TGF-beta1 on prolactin synthesis and secretion: an in-vitro study. J Neuroendocrinol 11: 351–360.

    Article  CAS  Google Scholar 

  • Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B . (2010). Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6: e1000899.

    Article  Google Scholar 

  • Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH et al. (2010). Molecular mechanisms of pituitary organogenesis: in search of novel regulatory genes. Mol Cell Endocrinol 323: 4–19.

    Article  CAS  Google Scholar 

  • del Arroyo AG, El Messaoudi S, Clark PA, James M, Stott F, Bracken A et al. (2007). E2F-dependent induction of p14ARF during cell cycle re-entry in human T cells. Cell Cycle 6: 2697–2705.

    Article  Google Scholar 

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV et al. (1998). E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442.

    Article  CAS  Google Scholar 

  • Evan GI, d'Adda di Fagagna F . (2009). Cellular senescence: hot or what? Curr Opin Genet Dev 19: 25–31.

    Article  CAS  Google Scholar 

  • Garcia A, Alvarez CV, Smith RG, Dieguez C . (2001). Regulation of pit-1 expression by ghrelin and GHRP-6 through the GH secretagogue receptor. Mol Endocrinol 15: 1484–1495.

    Article  CAS  Google Scholar 

  • Garcia-Lavandeira M, Diaz-Rodriguez E, Garcia-Rendueles ME, Rodrigues JS, Perez-Romero S, Bravo SB et al. (2010). Functional role of the RET dependence receptor, GFRa co-receptors and ligands in the pituitary. Front Horm Res 38: 127–138.

    Article  CAS  Google Scholar 

  • Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA et al. (2009). A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS ONE 4: e4815.

    Article  Google Scholar 

  • Gil J, Peters G . (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7: 667–677.

    Article  CAS  Google Scholar 

  • Goldschneider D, Mehlen P . (2010). Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 29: 1865–1882.

    Article  CAS  Google Scholar 

  • Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C et al. (2010). The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell 40: 863–876.

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • Herman V, Drazin NZ, Gonsky R, Melmed S . (1993). Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77: 50–55.

    CAS  PubMed  Google Scholar 

  • Inoue K, Roussel MF, Sherr CJ . (1999). Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 96: 3993–3998.

    Article  CAS  Google Scholar 

  • Itahana K, Zhang Y . (2008). Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell 13: 542–553.

    Article  CAS  Google Scholar 

  • Japon MA, Rubinstein M, Low MJ . (1994). In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J Histochem Cytochem 42: 1117–1125.

    Article  CAS  Google Scholar 

  • Japon MA, Urbano AG, Saez C, Segura DI, Cerro AL, Dieguez C et al. (2002). Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors. J Clin Endocrinol Metab 87: 1879–1884.

    Article  CAS  Google Scholar 

  • Junttila MR, Evan GI . (2009). p53—a jack of all trades but master of none. Nat Rev Cancer 9: 821–829.

    Article  CAS  Google Scholar 

  • Khutornenko AA, Roudko VV, Chernyak BV, Vartapetian AB, Chumakov PM, Evstafieva AG . (2010). Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci USA 107: 12828–12833.

    Article  CAS  Google Scholar 

  • Kirsch M, Morz M, Pinzer T, Schackert HK, Schackert G . (2009). Frequent loss of the CDKN2C (p18INK4c) gene product in pituitary adenomas. Genes Chromosomes Cancer 48: 143–154.

    Article  CAS  Google Scholar 

  • Kovi RC, Paliwal S, Pande S, Grossman SR . (2010). An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17: 513–521.

    Article  CAS  Google Scholar 

  • Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ . (2004). N-terminal polyubiquitination and degradation of the arf tumor suppressor. Genes Dev 18: 1862–1874.

    Article  CAS  Google Scholar 

  • Leontieva OV, Gudkov AV, Blagosklonny MV . (2010). Weak p53 permits senescence during cell cycle arrest. Cell Cycle 9: 4323–4327.

    Article  CAS  Google Scholar 

  • Lin SC, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG . (1993). Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364: 208–213.

    Article  CAS  Google Scholar 

  • Meek DW . (2009). Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9: 714–723.

    Article  CAS  Google Scholar 

  • Melmed S . (2003). Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112: 1603–1618.

    Article  CAS  Google Scholar 

  • Moll UM, Wolff S, Speidel D, Deppert W . (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17: 631–636.

    Article  CAS  Google Scholar 

  • Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L et al. (2010). Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467: 59–63.

    Article  CAS  Google Scholar 

  • Palmero I, Pantoja C, Serrano M . (1998). p19ARF links the tumour suppressor p53 to ras. Nature 395: 125–126.

    Article  CAS  Google Scholar 

  • Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I . (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67: 3963–3969.

    Article  CAS  Google Scholar 

  • Pfaffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M et al. (1992). Mutation of the POU-specific domain of pit-1 and hypopituitarism without pituitary hypoplasia. Science 257: 1118–1121.

    Article  CAS  Google Scholar 

  • Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A . (2001). DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3: 1–7.

    Article  CAS  Google Scholar 

  • Robertson KD, Jones PA . (1998). The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol 18: 6457–6473.

    Article  CAS  Google Scholar 

  • Serrano M . (2010). Shifting senescence into quiescence by turning up p53. Cell Cycle 9: 4256–4257.

    Article  CAS  Google Scholar 

  • Solloso A, Barreiro L, Seoane R, Nogueira E, Canibano C, Alvarez CV et al. (2008). GHRH proliferative action on somatotrophs is cell-type specific and dependent on pit-1/GHF-1 expression. J Cell Physiol 215: 140–150.

    Article  CAS  Google Scholar 

  • Taneja P, Maglic D, Kai F, Sugiyama T, Kendig RD, Frazier DP et al. (2010). Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-arf-p53 signaling and breast cancer development. Cancer Res 70: 9084–9094.

    Article  CAS  Google Scholar 

  • Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H . (2003). p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5: 216–223.

    Article  CAS  Google Scholar 

  • Tsai KY, MacPherson D, Rubinson DA, Nikitin AY, Bronson R, Mercer KL et al. (2002). ARF mutation accelerates pituitary tumor development in rb+/− mice. Proc Natl Acad Sci USA 99: 16865–16870.

    Article  CAS  Google Scholar 

  • Urbano AG, Suarez-Penaranda JM, Dieguez C, Alvarez CV . (2000). GDNF and RET-gene expression in anterior pituitary-cell types. Endocrinology 141: 1893–1896.

    Article  CAS  Google Scholar 

  • van Beek AP, Wolffenbuttel BH, Runge E, Trainer PJ, Jonsson PJ, Koltowska-Haggstrom M . (2010). The pituitary gland and age-dependent regulation of body composition. J Clin Endocrinol Metab 95: 3664–3674.

    Article  CAS  Google Scholar 

  • Vousden KH . (2000). P53: death star. Cell 103: 691–694.

    Article  CAS  Google Scholar 

  • Wang H, Ozaki T, Shamim Hossain M, Nakamura Y, Kamijo T, Xue X et al. (2008). A newly identified dependence receptor UNC5H4 is induced during DNA damage-mediated apoptosis and transcriptional target of tumor suppressor p53. Biochem Biophys Res Commun 370: 594–598.

    Article  CAS  Google Scholar 

  • Ward RD, Stone BM, Raetzman LT, Camper SA . (2006). Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol Endocrinol 20: 1378–1390.

    Article  CAS  Google Scholar 

  • Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38: 662–674.

    Article  CAS  Google Scholar 

  • Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD et al. (1999). Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84: 761–767.

    Article  CAS  Google Scholar 

  • Zhou Z, Flesken-Nikitin A, Levine CG, Shmidt EN, Eng JP, Nikitina EY et al. (2005). Suppression of melanotroph carcinogenesis leads to accelerated progression of pituitary anterior lobe tumors and medullary thyroid carcinomas in rb+/− mice. Cancer Res 65: 787–796.

    CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susana Bravo and Maria Garcia-Rendueles for helpful methodological advice. This project has been supported by grants Xunta de Galicia-MICINN-FEDER, 06PXIB208107PR, 09CSA011208PR, BFU2007-60571 and BFU2010-16652 to CVA. E D-R has been an Anxeles Alvariño fellow and M G-L is a Lucas Labrada fellow (Xunta de Galicia). These programs are co-financed by the European Community (Fondo Social Europeo). The text has been reviewed by G Lockhart, a professional editor of biomedical English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C V Alvarez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Rodriguez, E., García-Lavandeira, M., Perez-Romero, S. et al. Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells. Oncogene 31, 2824–2835 (2012). https://doi.org/10.1038/onc.2011.458

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.458

Keywords

This article is cited by

Search

Quick links