Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11

Abstract

Mutations of p53 in cancer can result in a gain of function associated with tumour progression and metastasis. We show that inducible expression of several p53 ‘hotspot’ mutants promote a range of centrosome abnormalities, including centrosome amplification, increased centrosome size and loss of cohesion, which lead to mitotic defects and multinucleation. These mutant p53-expressing cells also show a change in morphology and enhanced invasive capabilities. Consequently, we sought for a means to specifically target the function of mutant p53 in cancer cells. This study has identified ANKRD11 as a key regulator of the oncogenic potential of mutant p53. Loss of ANKRD11 expression with p53 mutation defines breast cancer patients with poor prognosis. ANKRD11 alleviates the mitotic defects driven by mutant p53 and suppresses mutant p53-mediated mesenchymal-like transformation and invasion. Mechanistically, we show that ANKRD11 restores a native conformation to the mutant p53 protein and causes dissociation of the mutant p53–p63 complex. This represents the first evidence of an endogenous protein with the capacity to suppress the oncogenic properties of mutant p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. (2009). A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137: 87–98.

    Article  CAS  Google Scholar 

  • Brosh R, Rotter V . (2009). When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9: 701–713.

    Article  CAS  Google Scholar 

  • Bullock AN, Fersht AR . (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1: 68–76.

    Article  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  Google Scholar 

  • Caulin C, Nguyen T, Lang GA, Goepfert TM, Brinkley BR, Cai WW et al. (2007). An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest 117: 1893–1901.

    Article  CAS  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  Google Scholar 

  • Di Agostino S, Cortese G, Monti O, Dell'Orso S, Sacchi A, Eisenstein M et al. (2008). The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle 7: 3440–3447.

    Article  CAS  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    Article  CAS  Google Scholar 

  • Dong P, Xu Z, Jia N, Li D, Feng Y . (2009). Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway. Mol Cancer 8: 103.

    Article  Google Scholar 

  • Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV et al. (2002). A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA 99: 937–942.

    Article  CAS  Google Scholar 

  • Gadea G, Lapasset L, Gauthier-Rouviere C, Roux P . (2002). Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J 21: 2373–2382.

    Article  CAS  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 downregulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    Article  CAS  Google Scholar 

  • Hadjihannas MV, Bruckner M, Behrens J . (2010). Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Rep 11: 317–324.

    Article  CAS  Google Scholar 

  • Hansen LL, Yilmaz M, Overgaard J, Andersen J, Kruse TA . (1998). Allelic loss of 16q23.2-24.2 is an independent marker of good prognosis in primary breast cancer. Cancer Res 58: 2166–2169.

    CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7: 469–483.

    Article  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC . (1991). p53 mutations in human cancers. Science 253: 49–53.

    Article  CAS  Google Scholar 

  • Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G . (2003). Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA 100: 13303–13307.

    Article  CAS  Google Scholar 

  • Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429.

    Article  CAS  Google Scholar 

  • Kravchenko JE, Ilyinskaya GV, Komarov PG, Agapova LS, Kochetkov DV, Strom E et al. (2008). Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 105: 6302–6307.

    Article  CAS  Google Scholar 

  • Kumar R, Neilsen PM, Crawford J, McKirdy R, Lee J, Powell JA et al. (2005). FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res 65: 11304–11313.

    Article  CAS  Google Scholar 

  • Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N et al. (1997). Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57: 1597–1604.

    CAS  PubMed  Google Scholar 

  • Lane DP . (1992). Cancer. p53, guardian of the genome. Nature 358: 15–16.

    Article  CAS  Google Scholar 

  • Liu DP, Song H, Xu Y . (2010). A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29: 949–956.

    Article  CAS  Google Scholar 

  • Liu G, Chen X . (2006). Regulation of the p53 transcriptional activity. J Cell Biochem 97: 448–458.

    Article  CAS  Google Scholar 

  • Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J, Lukas J . (2002). Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nat Cell Biol 4: 317–322.

    Article  CAS  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102: 13550–13555.

    Article  CAS  Google Scholar 

  • Milner J, Cook A, Sheldon M . (1987). A new anti-p53 monoclonal antibody, previously reported to be directed against the large T antigen of simian virus 40. Oncogene 1: 453–455.

    CAS  PubMed  Google Scholar 

  • Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B . (2008). Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27: 3371–3383.

    Article  CAS  Google Scholar 

  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell 139: 1327–1341.

    Article  Google Scholar 

  • Murphy KL, Dennis AP, Rosen JM . (2000). A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J 14: 2291–2302.

    Article  CAS  Google Scholar 

  • Neilsen PM, Cheney KM, Li CW, Chen JD, Cawrse JE, Schulz RB et al. (2008). Identification of ANKRD11 as a p53 coactivator. J Cell Sci 121: 3541–3552.

    Article  CAS  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P . (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2: a001008.

    Article  Google Scholar 

  • Oren M, Rotter V . (2010). Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2: a001107.

    Article  Google Scholar 

  • Pishas KI, Al-Ejeh F, Zinonos I, Kumar R, Evdokiou A, Brown MP et al. (2011). Nutlin-3a is a potential therapeutic for Ewing sarcoma. Clin Cancer Res 17: 494–504.

    Article  CAS  Google Scholar 

  • Rajagopalan H, Lengauer C . (2004). Aneuploidy and cancer. Nature 432: 338–341.

    Article  CAS  Google Scholar 

  • Roger L, Gadea G, Roux P . (2006). Control of cell migration: a tumour suppressor function for p53? Biol Cell 98: 141–152.

    Article  CAS  Google Scholar 

  • Sadot E, Geiger B, Oren M, Ben-Ze'ev A . (2001). Downregulation of beta-catenin by activated p53. Mol Cell Biol 21: 6768–6781.

    Article  CAS  Google Scholar 

  • Schneider G, Henrich A, Greiner G, Wolf V, Lovas A, Wieczorek M et al. (2010). Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene 29: 2795–2806.

    Article  CAS  Google Scholar 

  • Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A et al. (2004). Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23: 4430–4443.

    Article  CAS  Google Scholar 

  • Song H, Hollstein M, Xu Y . (2007). p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9: 573–580.

    Article  CAS  Google Scholar 

  • Stambolsky P, Tabach Y, Fontemaggi G, Weisz L, Maor-Aloni R, Siegfried Z et al. (2010). Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17: 273–285.

    Article  CAS  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817–18826.

    Article  CAS  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L et al. (2000). Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 275: 29503–29512.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R et al. (2007). Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67: 2396–2401.

    Article  CAS  Google Scholar 

  • Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR . (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci USA 96: 8438–8442.

    Article  CAS  Google Scholar 

  • Wonsey DR, Follettie MT . (2005). Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65: 5181–5189.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Vivek Mittal for the ecdysone-inducible constructs; Karen Vousden and Patricia Muller for the p63 and p73 constructs; Maria Lung, Sumitra Deb and Chikashi Ishioka for the mutant p53 constructs; Jeffrey Salisbury for the anti-centrin antibody; Anne-Marie Cleton-Jansen for providing patient material; and Darryl Russell and Kira Height for technical assistance. We acknowledge the Cancer Council of South Australia and San Remo for financial support. KKK is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow, and this work is supported by an NHMRC Program grant to KKK. FA is supported by the Cancer Council NSW, the Cure Cancer Foundation Australia and the Cancer Council SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Noll.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noll, J., Jeffery, J., Al-Ejeh, F. et al. Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 31, 2836–2848 (2012). https://doi.org/10.1038/onc.2011.456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.456

Keywords

This article is cited by

Search

Quick links