Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Integrity of mTORC2 is dependent on the rictor Gly-934 site

Abstract

Growth factor signaling coupled to activation of the phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway plays a crucial role in the regulation of cell proliferation and survival. The key regulatory kinase of Akt has been identified as mammalian target of rapamycin complex 2 (mTORC2), which functions as the PI3K-dependent Ser-473 kinase of Akt. This kinase complex is assembled by mTOR and its essential components rictor, Sin1 and mLST8. The recent genetic screening study in Caenorhabditis elegans has linked a specific point mutation of rictor to an elevated storage of fatty acids that resembles the rictor deficiency phenotype. In our study, we show that in mammalian cells the analogous single rictor point mutation (G934E) prevents the binding of rictor to Sin1 and the assembly of mTORC2, but this mutation does not interfere with the binding of the rictor-interacting protein Protor. A substitution of the rictor Gly-934 residue to a charged amino acid prevents formation of the rictor/Sin1 heterodimer. The cells expressing the rictor G934E mutant remain deficient in the mTORC2 signaling, as detected by the reduced phosphorylation of Akt on Ser-473 and a low cell proliferation rate. Thus, although a full length of rictor is required to interact with its binding partner Sin1, a single amino acid of rictor Gly-934 controls its interaction with Sin1 and assembly of mTORC2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Bayascas JR . (2008). Dissecting the role of the 3-phosphoinositide-dependent protein kinase-1 (PDK1) signalling pathways. Cell Cycle 7: 2978–2982.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D et al. (1998). Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17: 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Bozulic L, Surucu B, Hynx D, Hemmings BA . (2008). PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30: 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC . (2002). The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  • Chen C-H, Sarbassov DD . (2011). The mTOR kinase activity determines functional activity and integrity of mTORC2. J Biol Chem (resubmitted).

  • Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW et al. (2011). ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 4: ra10.

    Article  PubMed  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Cordes MH, Davidson AR, Sauer RT . (1996). Sequence space, folding and protein design. Curr Opin Struct Biol 6: 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA et al. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16: 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  • Gross JM, Yee D . (2003). The type-1 insulin-like growth factor receptor tyrosine kinase and breast cancer: biology and therapeutic relevance. Cancer Metastasis Rev 22: 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2005). An expanding role for mTOR in cancer. Trends Mol Med 11: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

    Article  CAS  PubMed  Google Scholar 

  • Jones KT, Greer ER, Pearce D, Ashrafi K . (2009). Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol 7: e60.

    PubMed  Google Scholar 

  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M et al. (2007). Identification of Protor as a novel rictor-binding component of mTOR complex-2. Biochem J 405: 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce LR, Komander D, Alessi DR . (2010). The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR . (2011). Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 436: 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM . (2005a). Growing roles for the mTOR pathway. Curr Opin Cell Biol 17: 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005b). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger J, Lemmon MA . (2003). SH2 and PTB domains in tyrosine kinase signaling. Sci STKE 2003: RE12.

    PubMed  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G . (2009). Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23: 496–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB et al. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279: 710–714.

    Article  CAS  PubMed  Google Scholar 

  • Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI et al. (2007). PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 282: 25604–25612.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yee D . (2000). Tyrosine kinase signalling in breast cancer: insulin-like growth factors and their receptors in breast cancer. Breast Cancer Res 2: 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the MD Anderson Trust Fellow Fund and NIH grant CA133522 (DDS). R Aimbetov and O Bulgakova have been partially supported by the Ph.D. training grants from Kazakhstan. We are thankful to our laboratory member Dr Tattym Shaikenov for providing the Akt substrate. We are also thankful to Dr Dario Alessi (University of Dundee, Dundee, England) for providing the Protor 1α expression plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Sarbassov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aimbetov, R., Chen, CH., Bulgakova, O. et al. Integrity of mTORC2 is dependent on the rictor Gly-934 site. Oncogene 31, 2115–2120 (2012). https://doi.org/10.1038/onc.2011.404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.404

Keywords

This article is cited by

Search

Quick links