Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases

Abstract

MicroRNAs (miRNAs) carry out post-transcriptional control of a multitude of cellular processes. Aberrant expression of miRNA can lead to diseases, including cancer. Gliomas are aggressive brain tumors that are thought to arise from transformed glioma-initiating neural stem cells (giNSCs). With the use of giNSCs and human glioblastoma cells, we investigated the function of miRNAs in gliomas. We identified pro-neuronal miR-128 as a candidate glioma tumor suppressor miRNA. Decreased expression of miR-128 correlates with aggressive human glioma subtypes. With a combination of molecular, cellular and in vivo approaches, we characterize miR-128's tumor suppressive role. miR-128 represses giNSC growth by enhancing neuronal differentiation. miR-128 represses growth and mediates differentiation by targeting oncogenic receptor tyrosine kinases (RTKs) epithelial growth factor receptor and platelet-derived growth factor receptor-α. Using an autochthonous glioma mouse model, we demonstrated that miR-128 repressed gliomagenesis. We identified miR-128 as a glioma tumor suppressor that targets RTK signaling to repress giNSC self-renewal and enhance differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1: 269–277.

    Article  CAS  Google Scholar 

  • Boockvar JA, Kapitonov D, Kapoor G, Schouten J, Counelis GJ, Bogler O et al. (2003). Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci 24: 1116–1130.

    Article  CAS  Google Scholar 

  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F . (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12: 399–408.

    Article  CAS  Google Scholar 

  • Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    Article  Google Scholar 

  • Conaco C, Otto S, Han J-J, Mandel G . (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103: 2422–2427.

    Article  CAS  Google Scholar 

  • Conti A, Aguennouz MH, La Torre D, Tomasello C, Cardali S, Angileri F et al. (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J Neurooncol 93: 325–332.

    Article  CAS  Google Scholar 

  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC . (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15: 1913–1925.

    Article  CAS  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J-M, Alvarez-Buylla A . (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36: 1021–1034.

    Article  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N . (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.

    Article  CAS  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21: 2683–2710.

    Article  CAS  Google Scholar 

  • Gangaraju VK, Lin H . (2009). MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10: 116–125.

    Article  CAS  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G et al. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68: 9125–9130.

    Article  CAS  Google Scholar 

  • Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E et al. (2010). Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell 18: 282–293.

    Article  CAS  Google Scholar 

  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al. (2009). The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23: 1327–1337.

    Article  CAS  Google Scholar 

  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S et al. (2006). PDGFR±-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51: 187–199.

    Article  CAS  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS . (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9: 1274–1281.

    Article  CAS  Google Scholar 

  • Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS . (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24: 857–864.

    Article  CAS  Google Scholar 

  • Lewis BP, Shih Ih, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  Google Scholar 

  • Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H et al. (2011). Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146: 209–221.

    Article  CAS  Google Scholar 

  • Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W et al. (2007). Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS One 2: e804.

    Article  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al. (2009). Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15: 110–116.

    Article  CAS  Google Scholar 

  • Mukasa A, Wykosky J, Ligon KL, Chin L, Cavenee WK, Furnari F . (2010). Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence. Proc Natl Acad Sci 107: 2616–2621.

    Article  CAS  Google Scholar 

  • : Network TCGA (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  Google Scholar 

  • Neveu P, Kye MJ, Qi S, Buchholz DE, Clegg DO, Sahin M et al. (2010). MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell 7: 671–681.

    Article  CAS  Google Scholar 

  • Papagiannakopoulos T, Shapiro A, Kosik KS . (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68: 8164–8172.

    Article  CAS  Google Scholar 

  • Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765.

    Article  CAS  Google Scholar 

  • Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC . (2004). Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 64: 4783–4789.

    Article  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  Google Scholar 

  • Stiles CD, Rowitch DH . (2008). Glioma stem cells: a midterm exam. Neuron 58: 832–846.

    Article  CAS  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR et al. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328: 1031–1035.

    Article  CAS  Google Scholar 

  • Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    Article  CAS  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K . (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21: 744–749.

    Article  CAS  Google Scholar 

  • Wuchty S, Arjona D, Li AG, Kotliarov Y, Walling J, Ahn S et al. (2011). Prediction of associations between microRNAs and gene expression in glioma biology. PLoS One 6: e14681.

    Article  CAS  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan GJ, Thomson JA, Kosik KS . (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137: 647–658.

    Article  CAS  Google Scholar 

  • Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X et al. (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87: 43–51.

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y-f, Bryant J, Charles A, Boado RJ, Pardridge WM . (2004). Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10: 3667–3677.

    Article  CAS  Google Scholar 

  • Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455: 1129–1133.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Israel Hernandez, Diego Piedrahita and Yngo Garcia for providing assistance with animal experiments, and Na Xu, Min Jeong Kye and Cecilia Conaco for scientific conversations and suggestions. Judith Czerny assisted in constructing target 3′-UTR constructs. Support for the project was from the WM Keck Foundation (KSK), the Miriam and Sheldon Adelson Medical Foundation (KSK), the National Science Foundation under grant No. PHY05-51164 (PN), the Myelin Repair Foundation (JCD and BAB), and the National Multiple Sclerosis Society (JCD and BAB). HZ work is supported by NIH grants (R55-CA136495, R01-CA136495). HZ is a Pew Scholar in Biomedical Sciences, supported by The Pew Charitable Trusts. DHR is an HHMI investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Kosik.

Ethics declarations

Competing interests

K.S.K. owns stock in and serves on the board of Minerva Biotechnologies corporation and is on the scientific advisory board of Nocira Pharmaceuticals.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papagiannakopoulos, T., Friedmann-Morvinski, D., Neveu, P. et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31, 1884–1895 (2012). https://doi.org/10.1038/onc.2011.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.380

Keywords

Search

Quick links