Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Further activation of FLT3 mutants by FLT3 ligand

Abstract

Somatic mutations of FLT3 involving internal tandem duplication (ITD) of the juxtamembrane domain or point mutations in the tyrosine kinase domain (TKD) appear to activate FLT3 in a FLT3 ligand (FL)-independent manner. To determine whether or not FLT3 mutants respond to FL for their activation, a FL-deficient (FL−/−) murine embryo fibroblast (MEF) cell line was established. Expression of FLT3/ITD and FLT3/TKD mutations in FL−/− MEF cells resulted in low levels of constitutive phosphorylation of FLT3. However, a more than fourfold increase of FLT3 autophosphorylation was induced by exogenous FL. Rescue of endogenous FL expression in FL−/− MEF cells expressing FLT3 mutants led to more than a threefold increase of FLT3 phosphorylation. FL addition led to further activation of the FLT3 receptors and enhanced survival and/or decreased apoptosis in leukemia-derived cell lines and primary leukemic cells expressing FLT3 mutations. Functional studies revealed that exogenous FL promoted the colony-forming and recloning abilities of FLT3 mutant transduced primary bone marrow cells derived from FL−/− mice. Endogenous FL contributes in vivo to functional signaling through FLT3 as noted by the decreased survival of FL+/+ITD+/+ mice compared with FL−/−ITD+/+ mice. These data suggest that FL leads to further activation of FLT3 mutants and is especially important in light of recent findings of elevated FL levels in acute myeloid leukemia patients in response to chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT . (2001). Genomic structure of human FLT3: implications for mutational analysis. Br J Haematol 113: 1076–1077.

    Article  CAS  PubMed  Google Scholar 

  • Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. (2001). Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97: 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  • Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque MJ, Marchetto S et al. (1992). Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 80: 2584–2593.

    CAS  PubMed  Google Scholar 

  • Brasel K, Escobar S, Anderberg R, de Vries P, Gruss HJ, Lyman SD . (1995). Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia 9: 1212–1218.

    CAS  PubMed  Google Scholar 

  • Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P et al. (1996). Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 87: 1089–1096.

    CAS  PubMed  Google Scholar 

  • Dosil M, Wang S, Lemischka IR . (1993). Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol 13: 6572–6585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler HG . (1996). Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 10: 588–599.

    CAS  PubMed  Google Scholar 

  • Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K et al. (2000). Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 108: 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Freedman MH, Grunberger T, Correa P, Axelrad AA, Dube ID, Cohen A . (1993). Autocrine and paracrine growth control by granulocyte-monocyte colony-stimulating factor of acute lymphoblastic leukemia cells. Blood 81: 3068–3075.

    CAS  PubMed  Google Scholar 

  • Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U et al. (1993). Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 92: 1736–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilliland DG, Griffin JD . (2002). The roles of FLT3 in hematopoiesis and leukemia. Blood 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  • Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H et al. (1997). Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 11: 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  • Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N et al. (1999). Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 13: 38–43.

    CAS  PubMed  Google Scholar 

  • Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. (1999). Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  • Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K et al. (1997). Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia 11: 1447–1452.

    Article  CAS  PubMed  Google Scholar 

  • Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et al. (1998). Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 12: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  • Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O . (1998). The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells. J Biol Chem 273: 14962–14967.

    Article  CAS  PubMed  Google Scholar 

  • Levis M, Ravandi F, Wang E.S, Baer M.R, Perl A, Coutre S et al. (2011). Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 117: 3294–3301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li H, Wang MN, Lu D, Bassi R, Wu Y et al. (2004). Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood 104: 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Pioloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F et al. (2008). Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood 111: 3849–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisovsky M, Estrov Z, Zhang X, Sanchez-Williams G, Snell V et al. (1996). Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bcl-2 and Bax. Blood 88: 3987–3997.

    CAS  PubMed  Google Scholar 

  • Lyman S, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B et al. (1993). Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  • Marchetto S, Fournier E, Beslu N, Aurran-Schleinitz T, Dubreuil P, Borg JP et al. (1999). SHC and SHIP phosphorylation and interaction in response to activation of the FLT3 receptor. Leukemia 13: 1374–1382.

    Article  CAS  PubMed  Google Scholar 

  • Meierhoff G, Dehmel U, Gruss HJ, Rosnet O, Birnbaum D, Quentmeier H et al. (1995). Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia 9: 1368–1372.

    CAS  PubMed  Google Scholar 

  • Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. (2001). Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. (1996). Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  • Pao W, Miller VA . (2005). Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23: 2556–2568.

    Article  CAS  PubMed  Google Scholar 

  • Pietsch T . (1993). Paracrine and autocrine growth mechanisms of human stem cell factor (c-kit ligand) in myeloid leukemia. Nouv Rev Fr Hematol 35: 285–286.

    CAS  PubMed  Google Scholar 

  • Piloto O, Levis M, Huso D, Li Y, Li H, Wang MN et al. (2005). Inhibitory anti-FLT3 antibodies are capable of mediating antibody-dependent cell-mediated cytotoxicity and reducing engraftment of acute myelogenous leukemia blasts in nonobese diabetic/severe combined immunodeficient mice. Cancer Res 65: 1514–1522.

    Article  CAS  PubMed  Google Scholar 

  • Rogers SY, Bradbury D, Kozlowski R, Russell NH . (1994). Evidence for internal autocrine regulation of growth in acute myeloblastic leukemia cells. Exp Hematol 22: 593–598.

    CAS  PubMed  Google Scholar 

  • Rosnet O, Buhring HJ, deLapeyriere O, Beslu N, Lavagna C, Marchetto S et al. (1996). Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 95: 218–223.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Yang X, Knapper S, White P, Smith B.D, Galkin S et al. (2011). FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 117: 3286–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. (2001). FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97: 3589–3595.

    CAS  PubMed  Google Scholar 

  • Tse KF, Mukherjee G, Small D . (2000). Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 14: 1766–1776.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. (2001). Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. (1997). Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Broxmeyer H . (2000). Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and pi3 kinase. Biochem Biophys Res Commun 277: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R et al. (2000). Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med 192: 719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Mantel C, Broxmeyer HE . (1999). Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol 65: 372–380.

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Friedman AD, Small D . (2002). Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations. Blood 100: 4154–4161.

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC et al. (2004). FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 103: 267–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Katharine A Whartenby, Alan Friedman and Linzhao Cheng for their gift of reagents. DS is also supported by the Kyle Haydock Professorship in Oncology and the Giant Food Pediatric Cancer Research Fund. This work was supported by grants from the NIH (CA90668, CA70970 and CA095600-01) and the Leukemia and Lymphoma Society (DS). It was also supported by grants from the NCI (NCI Leukemia SPORE P50 CA100632-06, R01 CA128864) and the American Society of Clinical Oncology (ML). ML is a Clinical Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Small.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, R., Bailey, E., Nguyen, B. et al. Further activation of FLT3 mutants by FLT3 ligand. Oncogene 30, 4004–4014 (2011). https://doi.org/10.1038/onc.2011.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.110

Keywords

This article is cited by

Search

Quick links