Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

New model systems provide insights into Myc-induced transformation

Abstract

The ability of Myc to promote cellular transformation is well established; however, a better understanding of the mechanisms through which Myc mediates tumorigenesis is essential for the development of therapeutic approaches to target this potent oncoprotein. Structure–function studies in rodent fibroblast cells have provided the basis for much of our current understanding of these mechanisms. To build on these approaches, we have characterized three novel human cell line models of Myc-dependent transformation: MCF10A, SH-EP Tet21/N-Myc, and LF1/TERT/LT/ST cells. We have also evaluated Myc family proteins (c-Myc and L-Myc), a naturally occurring isoform of Myc (MycS), and a set of N-terminal domain mutants (ΔMBII, W135E, T58A) for their ability to promote anchorage-independent growth in these models. Taken together, these results provide the field with three new human cell-based models to study Myc activity, highlight the importance of cellular context, and challenge the paradigm that the ability of Myc to promote tumorigenesis is exclusively MBII-dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Bahram F, von der Lehr N, Cetinkaya C, Larsson LG . (2000). c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95: 2104–2110.

    CAS  PubMed  Google Scholar 

  • Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I . (1993). Point mutations in the c-Myc transactivation domain are common in Burkitt′s lymphoma and mouse plasmacytomas. Nat Genet 5: 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Breit S, Schwab M . (1989). Suppression of MYC by high expression of NMYC in human neuroblastoma cells. J Neurosci Res 24: 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Callus BA, Ekert PG, Heraud JE, Jabbour AM, Kotevski A, Vince JE et al. (2008). Cytoplasmic p53 is not required for PUMA-induced apoptosis. Cell Death Differ 15: 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Chang DW, Claassen GF, Hann SR, Cole MD . (2000). The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol 20: 4309–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Hahn WC . (2003). SV40 early region oncoproteins and human cell transformation. Histol Histopathol 18: 541–550.

    CAS  PubMed  Google Scholar 

  • Cleveland JL, Huleihel M, Bressler P, Siebenlist U, Akiyama L, Eisenman RN et al. (1988). Negative regulation of c-myc transcription involves myc family proteins. Oncog Res 3: 357–375.

    CAS  PubMed  Google Scholar 

  • Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner AJ, O'Leary M et al. (2000). Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 20: 6008–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling VH, D'Cruz CM, Chodosh LA, Cole MD . (2007). c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol Cell Biol 27: 5135–5146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • Drayton S, Peters G . (2002). Immortalisation and transformation revisited. Curr Opin Genet Dev 12: 98–104.

    Article  CAS  PubMed  Google Scholar 

  • Gregory MA, Qi Y, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278: 51606–51612.

    Article  CAS  PubMed  Google Scholar 

  • Gustafson WC, Weiss WA . (2010). Myc proteins as therapeutic targets. Oncogene 29: 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . (1999). Creation of human tumour cells with defined genetic elements. Nature 400: 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. (2005). Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436: 807–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst A, Hemann MT, Tworkowski KA, Salghetti SE, Lowe SW, Tansey WP . (2005). A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep 6: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Shago M, Kaustov L, Boutros PC, Clendening JW, Sheng Y et al. (2007). CUL7 is a novel antiapoptotic oncogene. Cancer Res 67: 9616–9622.

    Article  CAS  PubMed  Google Scholar 

  • Kuttler F, Ame P, Clark H, Haughey C, Mougin C, Cahn JY et al. (2001). c-myc box II mutations in Burkitt′s lymphoma-derived alleles reduce cell-transformation activity and lower response to broad apoptotic stimuli. Oncogene 20: 6084–6094.

    Article  CAS  PubMed  Google Scholar 

  • Land H, Parada LF, Weinberg RA . (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Article  CAS  PubMed  Google Scholar 

  • Landay M, Oster SK, Khosravi F, Grove LE, Yin X, Sedivy J et al. (2000). Promotion of growth and apoptosis in c-myc nullizygous fibroblasts by other members of the myc oncoprotein family. Cell Death Differ 7: 697–705.

    Article  CAS  PubMed  Google Scholar 

  • Langdon WY, Harris AW, Cory S, Adams JM . (1986). The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47: 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Lutz W, Stohr M, Schurmann J, Wenzel A, Lohr A, Schwab M . (1996). Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13: 803–812.

    CAS  PubMed  Google Scholar 

  • Malynn BA, de Alboran IM, O'Hagan RC, Bronson R, Davidson L, DePinho RA et al. (2000). N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 14: 1390–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94: 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Meyer N, Penn LZ . (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8: 976–990.

    Article  CAS  PubMed  Google Scholar 

  • Oster SK, Mao DY, Kennedy J, Penn LZ . (2003). Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22: 1998–2010.

    Article  CAS  PubMed  Google Scholar 

  • Penn LJ, Brooks MW, Laufer EM, Land H . (1990). Negative autoregulation of c-myc transcription. EMBO J 9: 1113–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prowse KR, Greider CW . (1995). Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92: 4818–4822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab M . (2004). MYCN in neuronal tumours. Cancer Lett 204: 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM et al. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  • Spotts GD, Patel SV, Xiao Q, Hann SR . (1997). Identification of downstream-initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol Cell Biol 17: 1459–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart TA, Pattengale PK, Leder P . (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Stone J, de Lange T, Ramsay G, Jakobovits E, Bishop JM, Varmus H et al. (1987). Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 7: 1697–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vervoorts J, Luscher-Firzlaff J, Luscher B . (2006). The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 281: 34725–34729.

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Jobling WA, Chen W, Hahn WC, Sedivy JM . (2003). Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23: 2859–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood MA, McMahon SB, Cole MD . (2000). An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ . (2004). Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 64: 6461–6468.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge technical assistance from Ms Caitlin Latimer. We thank the members of the Penn Lab for helpful discussions and critical review of this manuscript. This research was funded by a grant from the Canadian Cancer Society Research Institute (LZP), an Ontario Graduate Scholarship (AS), and a Canadian Breast Cancer Foundation Ontario Region Doctoral Fellowship (ARW). Additional support was provided by the Ontario Ministry of Health and Long Term Care. The views expressed do not necessarily reflect those of the OMOHLTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Z Penn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasylishen, A., Stojanova, A., Oliveri, S. et al. New model systems provide insights into Myc-induced transformation. Oncogene 30, 3727–3734 (2011). https://doi.org/10.1038/onc.2011.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.88

Keywords

This article is cited by

Search

Quick links