Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability

Abstract

c-Myb is an essential hematopoietic transcription factor that controls proliferation and differentiation of progenitors during blood cell development. Whereas sumoylation of the C-terminal regulatory domain (CRD) is known to have a major impact on the activity of c-Myb, no role for noncovalent binding of small ubiquitin-like modifier (SUMO) to c-Myb has been described. Based on the consensus SUMO-interacting motif (SIM), we identified and examined putative SIMs in human c-Myb. Interaction and reporter assays showed that the SIM in the in the transactivation domain of c-Myb (V267NIV) is functional. This motif is necessary for c-Myb to be able to interact noncovalently with SUMO, preferentially SUMO2/3. Destroying the SUMO-binding properties by mutation resulted in a large increase in the transactivation potential of c-Myb. Mutational analysis and overexpression of conjugation-defective SUMO argued against intramolecular repression caused by sumoylated CRD and in favor of SUMO-dependent repression in trans. Using both a myeloid cell line-based assay and a primary hematopoietic cell assay, we addressed the transforming abilities of SUMO binding and conjugation mutants. Interestingly, only loss of SUMO binding, and not SUMO conjugation, enhanced the myeloid transformational potential of c-Myb. c-Myb with the SIM mutated conferred a higher proliferative ability than the wild-type and caused an effective differentiation block. This establishes SUMO binding as a mechanism involved in modulating the transactivation activity of c-Myb, and responsible for keeping the transforming potential of the oncoprotein in check.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alm-Kristiansen AH, Saether T, Matre V, Gilfillan S, Dahle O, Gabrielsen OS . (2008). FLASH acts as a co-activator of the transcription factor c-Myb and localizes to active RNA polymerase II foci. Oncogene 27: 4644–4656.

    Article  CAS  Google Scholar 

  • Andersson KB, Kowenz-Leutz E, Brendeford EM, Tygsett AH, Leutz A, Gabrielsen OS . (2003). Phosphorylation-dependent down-regulation of c-Myb DNA binding is abrogated by a point mutation in the v-myb oncogene. J Biol Chem 278: 3816–3824.

    Article  CAS  Google Scholar 

  • Bies J, Markus J, Wolff L . (2002). Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem 277: 8999–9009.

    Article  CAS  Google Scholar 

  • Brown AL, Wilkinson CR, Waterman SR, Kok CH, Salerno DG, Diakiw SM et al. (2006). Genetic regulators of myelopoiesis and leukemic signaling identified by gene profiling and linear modeling. J Leukoc Biol 80: 433–447.

    Article  CAS  Google Scholar 

  • Burk O, Mink S, Ringwald M, Klempnauer KH . (1993). Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcription factors. EMBO J 12: 2027–2038.

    Article  CAS  Google Scholar 

  • Chen RH, Lipsick JS . (1993). Differential transcriptional activation by v-myb and c-myb in animal cells and Saccharomyces cerevisiae. Mol Cell Biol 13: 4423–4431.

    Article  CAS  Google Scholar 

  • Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al. (2007). The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110: 1251–1261.

    Article  CAS  Google Scholar 

  • Dahle O, Andersen TO, Nordgard O, Matre V, Del Sal G, Gabrielsen OS . (2003). Transactivation properties of c-Myb are critically dependent on two SUMO-1 acceptor sites that are conjugated in a PIASy enhanced manner. Eur J Biochem 270: 1338–1348.

    Article  CAS  Google Scholar 

  • Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C et al. (1996). CBP as a transcriptional coactivator of c-Myb. Genes Dev 10: 528–540.

    CAS  Google Scholar 

  • Dash AB, Orrico FC, Ness SA . (1996). The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb. Genes Dev 10: 1858–1869.

    Article  CAS  Google Scholar 

  • Dubendorff JW, Whittaker LJ, Eltman JT, Lipsick JS . (1992). Carboxy-terminal elements of c-Myb negatively regulate transcriptional activation in cis and in trans. Genes Dev 6: 2524–2535.

    Article  CAS  Google Scholar 

  • Gabrielsen OS, Sentenac A, Fromageot P . (1991). Specific DNA binding by c-Myb: evidence for a double helix-turn-helix-related motif. Science 253: 1140–1143.

    Article  CAS  Google Scholar 

  • Geiss-Friedlander R, Melchior F . (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956.

    Article  CAS  Google Scholar 

  • Gill G . (2005). Something about SUMO inhibits transcription. Curr Opin Genet Dev 15: 536–541.

    Article  CAS  Google Scholar 

  • Gonda TJ, Buckmaster C, Ramsay RG . (1989). Activation of c-myb by carboxy-terminal truncation: relationship to transformation of murine haemopoietic cells in vitro. EMBO J 8: 1777–1783.

    Article  CAS  Google Scholar 

  • Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A et al. (2005). Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102–4110.

    Article  CAS  Google Scholar 

  • Hay RT . (2005). SUMO: a history of modification. Mol Cell 18: 1–12.

    Article  CAS  Google Scholar 

  • Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I . (2006). Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281: 16117–16127.

    Article  CAS  Google Scholar 

  • Hoeller D, Hecker CM, Dikic I . (2006). Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6: 776–788.

    Article  CAS  Google Scholar 

  • Hu YL, Ramsay RG, Kanei-Ishii C, Ishii S, Gonda TJ . (1991). Transformation by carboxyl-deleted Myb reflects increased transactivating capacity and disruption of a negative regulatory domain. Oncogene 6: 1549–1553.

    CAS  PubMed  Google Scholar 

  • Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM . (2010). c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 120: 593–606.

    Article  CAS  Google Scholar 

  • Karafiat V, Dvorakova M, Pajer P, Kralova J, Horejsi Z, Cermak V et al. (2001). The leucine zipper region of Myb oncoprotein regulates the commitment of hematopoietic progenitors. Blood 98: 3668–3676.

    Article  CAS  Google Scholar 

  • Kasper LH, Boussouar F, Ney PA, Jackson CW, Rehg J, van Deursen JM et al. (2002). A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419: 738–743.

    Article  CAS  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M . (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    Article  CAS  Google Scholar 

  • Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A et al. (2008). Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31: 371–382.

    Article  CAS  Google Scholar 

  • Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. (2007). Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39: 593–595.

    Article  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547–555.

    Article  CAS  Google Scholar 

  • Lane T, Ibanez C, Garcia A, Graf T, Lipsick J . (1990). Transformation by v-myb correlates with trans-activation of gene expression. Mol Cell Biol 10: 2591–2598.

    Article  CAS  Google Scholar 

  • Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT et al. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24: 341–354.

    Article  CAS  Google Scholar 

  • McCormack MP, Gonda TJ . (2000). Novel murine myeloid cell lines that exhibit a differentiation switch in response to IL-3 or GM–CSF, or to different constitutively active mutants of the GM–CSF receptor beta subunit. Blood 95: 120–127.

    CAS  PubMed  Google Scholar 

  • Minty A, Dumont X, Kaghad M, Caput D . (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275: 36316–36323.

    Article  CAS  Google Scholar 

  • Molvaersmyr AK, Saether T, Gilfillan S, Lorenzo PI, Kvaloy H, Matre V et al. (2010). A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. Nucleic Acids Res 38: 4970–4984.

    Article  CAS  Google Scholar 

  • Murati A, Gervais C, Carbuccia N, Finetti P, Cervera N, Adelaide J et al. (2009). Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases. Leukemia 23: 85–94.

    Article  CAS  Google Scholar 

  • Ness SA, Kowenz-Leutz E, Casini T, Graf T, Leutz A . (1993). Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types. Genes Dev 7: 749–759.

    Article  CAS  Google Scholar 

  • Oelgeschlager M, Janknecht R, Krieg J, Schreek S, Luscher B . (1996). Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J 15: 2771–2780.

    Article  CAS  Google Scholar 

  • Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ . (2009). Mutations in multiple domains of c-Myb disrupt interaction with CBP/p300 and abrogate myeloid transforming ability. Mol Cancer Res 7: 1477–1486.

    Article  CAS  Google Scholar 

  • Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G . (2009). Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA 106: 18740–18744.

    Article  CAS  Google Scholar 

  • Ramsay RG, Gonda TJ . (2008). MYB function in normal and cancer cells. Nat Rev Cancer 8: 523–534.

    Article  CAS  Google Scholar 

  • Reverter D, Lima CD . (2005). Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435: 687–692.

    Article  CAS  Google Scholar 

  • Saether T, Berge T, Ledsaak M, Matre V, Alm-Kristiansen AH, Dahle O et al. (2007). The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 282: 13994–14005.

    Article  CAS  Google Scholar 

  • Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP . (2006). The mechanisms of PML-nuclear body formation. Mol Cell 24: 331–339.

    Article  CAS  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y . (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101: 14373–14378.

    Article  CAS  Google Scholar 

  • Song J, Zhang Z, Hu W, Chen Y . (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280: 40122–40129.

    Article  CAS  Google Scholar 

  • Sramko M, Markus J, Kabat J, Wolff L, Bies J . (2006). Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 281: 40065–40075.

    Article  CAS  Google Scholar 

  • Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI . (2005). Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 280: 5611–5621.

    Article  CAS  Google Scholar 

  • Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT . (2005). Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol 12: 67–74.

    Article  CAS  Google Scholar 

  • Vorbrueggen G, Kalkbrenner F, Guehmann S, Moelling K . (1994). The carboxy terminus of human c-myb protein stimulates activated transcription in trans. Nucleic Acids Res 22: 2466–2475.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marit Ledsaak for excellent technical assistance and Professor D Livingston, Professor G Del Sal, Professor RT Hay, Professor R Grosschedl and Professor ET Yeh for providing us with relevant expression constructs. This work was supported by the Norwegian Cancer Society (TS) and the FUGE program of the Norwegian Research Council. DRP was supported by a scholarship from The Leukaemia Foundation (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Sæther.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sæther, T., Pattabiraman, D., Alm-Kristiansen, A. et al. A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Oncogene 30, 212–222 (2011). https://doi.org/10.1038/onc.2010.397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.397

Keywords

This article is cited by

Search

Quick links