Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions

Abstract

The hairy/enhancer-of-split related with YRPW motif 1 (HEY1) is a member of the basic-helix-loop-helix-Orange (bHLH-O) family of transcriptional repressors that mediate Notch signaling. Several cancer-related pathways also regulate HEY1 expression, and HEY1 itself acts as an indirect positive regulator of the p53 tumor suppressor protein and a negative regulator of androgen receptor activity. In this study we show how a naturally occurring non-synonymous polymorphism at codon 94 of HEY1, which results in a substitution of leucine by methionine (Leu94Met), converts HEY1 from an androgen receptor corepressor to an androgen receptor co-activator without affecting its intrinsic transcriptional repressive domains. The polymorphism Leu94Met also abolishes HEY1-mediated activation of p53 and suppresses the ability of HEY1 to induce p53-dependent cell-cycle arrest and aberrant cell differentiation in human osteosarcoma U2OS cells. Moreover, expression of HEY1, but not of the variant Leu94Met, confers sensitivity to p53-activating chemotherapeutic drugs on U2OS cells. In addition, we have identified motifs in HEY1 that are critical for the regulation of its subcellular localization and analysed how mutations in those motifs affect both HEY1 and HEY1-Leu94Met functions. These findings suggest that the polymorphism Leu94Met in HEY1 radically alters its biological activities and may affect oncogenic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G et al. (2008). EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res 68: 7100–7109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG . (2005). Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25: 1425–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contente A, Dittmer A, Koch MC, Roth J, Dobbelstein M . (2002). A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat Genet 30: 315–320.

    Article  PubMed  Google Scholar 

  • Davis RL, Turner DL . (2001). Vertebrate hairy and enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20: 8342–8357.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa JM . (2008). Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27: 4013–4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferre-D’Amare AR, Prendergast GC, Ziff EB, Burley SK . (1993). Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38–45.

    Article  PubMed  Google Scholar 

  • Fuke S, Sasagawa N, Ishiura S . (2005). Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3′ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem 137: 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Gartel AL, Radhakrishnan SK . (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65: 3980–3985.

    Article  CAS  PubMed  Google Scholar 

  • Giovannini C, Gramantieri L, Chieco P, Minguzzi M, Lago F, Pianetti S et al. (2009). Selective ablation of Notch3 in HCC enhances doxorubicin's death promoting effect by a p53 dependent mechanism. J Hepatol 50: 969–979.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS et al. (2004). Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci USA 101: 3456–3461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM et al. (2009). A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med 13: 136–146.

    Article  CAS  PubMed  Google Scholar 

  • Hunter KW, Crawford NP . (2006). Germ line polymorphism in metastatic progression. Cancer Res 66: 1251–1254.

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Kedes L, Hamamori Y . (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194: 237–255.

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Sartorelli V, Chung G, Shichinohe T, Kedes L, Hamamori Y . (2001a). HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol 21: 6071–6079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G et al. (2001b). HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 21: 6080–6089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh F, Itoh S, Goumans MJ, Valdimarsdottir G, Iso T, Dotto GP et al. (2004). Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 23: 541–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karsenty G . (2008). Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9: 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Knudson AG . (2001). Two genetic hits (more or less) to cancer. Nat Rev Cancer 1: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE et al. (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172: 909–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong KG, Gao WQ . (2008). The Notch pathway in prostate development and cancer. Differentiation 76: 699–716.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, El-Deiry WS . (2009). Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 14: 597–606.

    Article  CAS  PubMed  Google Scholar 

  • Maier MM, Gessler M . (2000). Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem Biophys Res Commun 275: 652–660.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D et al. (2000). Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 97: 13655–13660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch EC, Humbey O, Murphy ME . (2006). Polymorphisms in the p53 pathway. Oncogene 25: 1602–1611.

    Article  CAS  PubMed  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928–933.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto M, Hirata H, Ohtsuka T, Bessho Y, Kageyama R . (2003). The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J Biol Chem 278: 44808–44815.

    Article  CAS  PubMed  Google Scholar 

  • Satow T, Bae SK, Inoue T, Inoue C, Miyoshi G, Tomita K et al. (2001). The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina. J Neurosci 21: 1265–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivertsen EA, Huse K, Hystad ME, Kersten C, Smeland EB, Myklebust JH . (2007). Inhibitory effects and target genes of bone morphogenetic protein 6 in Jurkat TAg cells. Eur J Immunol 37: 2937–2948.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Setoguchi T, Hirotsu M, Gao H, Sasaki H, Matsunoshita Y et al. (2009). Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100: 1957–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Undevia SD, Gomez-Abuin G, Ratain MJ . (2005). Pharmacokinetic variability of anticancer agents. Nat Rev Cancer 5: 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Villaronga MA, Bevan CL, Belandia B . (2008). Notch signaling: a potential therapeutic target in prostate cancer. Curr Cancer Drug Targets 8: 566–580.

    Article  CAS  PubMed  Google Scholar 

  • Whibley C, Pharoah PD, Hollstein M . (2009). p53 polymorphisms: cancer implications. Nat Rev Cancer 9: 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Weinberg RA . (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818–829.

    Article  CAS  PubMed  Google Scholar 

  • Zamurovic N, Cappellen D, Rohner D, Susa M . (2004). Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279: 37704–37715.

    Article  CAS  PubMed  Google Scholar 

  • Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP . (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23: 1155–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Z, Ahmed F, Banerjee S, Li Y, Sarkar FH . (2006). Down-regulation of Jagged-1 induces cell growth inhibition and S phase arrest in prostate cancer cells. Int J Cancer 119: 2071–2077.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ana Aranda for her continuous support and Linn Markert for technical assistance. This study was supported by the MICINN (SAF2007-62642, SAF2006-07785), the Fundación de Investigación Médica Mutua Madrileña, the FIS (RD06/0020/0036), the CRESCENDO (FP-018652) and Cancer Research UK (C11509/A8570).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Llanos or B Belandia.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaronga, M., Lavery, D., Bevan, C. et al. HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions. Oncogene 29, 411–420 (2010). https://doi.org/10.1038/onc.2009.309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.309

Keywords

This article is cited by

Search

Quick links