Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

Abstract

Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCδ and PKCβII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Battaini F, Pascale A, Paoletti R, Govoni S . (1997). The role of anchoring protein RACK1 in PKC activation in the ageing rat brain. Trends Neurosci 20: 410–415.

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN . (1998). The free radical theory of aging matures. Physiol Rev 78: 547–581.

    Article  CAS  PubMed  Google Scholar 

  • Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ . (2000). RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 14: 2549–5258.

    Article  CAS  PubMed  Google Scholar 

  • Besson A, Wilson TL, Yong VW . (2002). The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 277: 22073–22084.

    Article  CAS  PubMed  Google Scholar 

  • Brosh Jr RM, von Kobbe C, Sommers JA, Karmakar P, Opresko PL, Piotrowski J et al. (2001). Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J 20: 5791–5801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng WH, Muftuoglu M, Bohr VA . (2007). Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 42: 871–878.

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T et al. (2008). WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 19: 3923–3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA . (2000). Ku complex interacts with and stimulates the Werner protein. Genes Dev 14: 907–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corsini ER, Racchi M, Sinforiani E, Lucchi L, Viviani B, Rovati GE et al. (2005). Age-related decline in RACK-1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. J Leuk Biol 77: 247–256.

    Article  CAS  Google Scholar 

  • Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J et al. (2007). The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 282: 26591–26602.

    Article  CAS  PubMed  Google Scholar 

  • Davis T, Wyllie FS, Rokicki MJ, Bagley MC, Kipling D . (2007). The role of cellular senescence in Werner syndrome: toward therapeutic intervention in human premature aging. Ann N Y Acad Sci 1100: 455–469.

    Article  CAS  PubMed  Google Scholar 

  • Davis T, Kipling D . (2008). Assessing the role of stress signaling via p38 MAP kinase in the premature senescence of Ataxia Telangiectasia and Werner syndrome fibroblasts. Biogerontology 10: 253–266.

    Article  PubMed  Google Scholar 

  • Deschênes F, Massip L, Garand C, Lebel M . (2005). in vivo misregulation of genes involved in apoptosis, development and oxidative stress in mice lacking both functional Werner syndrome protein and poly(ADP-ribose) polymerase-1. Hum Mol Genet 14: 3293–3308.

    Article  PubMed  Google Scholar 

  • Edwards AS, Faux MC, Scott JD, Newton AC . (1999). Carboxyl-terminal phosphorylation regulates the function and subcellular localization of protein kinase C betaII. J Biol Chem 274: 6461–6468.

    Article  CAS  PubMed  Google Scholar 

  • Egidy G, Julé S, Bossé P, Bernex F, Geffrotin C, Vincent-Naulleau S et al. (2008). Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation. Mol Cancer 7: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein CJ, Martin GM, Schultz AL, Motulsky AG . (1966). Werner's syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45: 177–221.

    Article  CAS  PubMed  Google Scholar 

  • Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S . (1993). The gene responsible for Werner syndrome may be a ‘counting’ gene. Proc Natl Acad Sci USA 90: 12030–12034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso S, Volta V, Sala LA, Vietri M, Marchisio PC, Ron D et al. (2008). PKCbetaII modulates translation independently from mTOR and through RACK1. Biochem J 415: 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Indig FE, Partridge JJ, von Kobbe C, Aladjem MI, Latterich M, Bohr VA . (2004). Werner syndrome protein directly binds to the AAA ATPase p97/VCP in an ATP-dependent fashion. J Struct Biol 146: 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y . (2005). Oxidative stress and the JNK pathway in diabetes. Curr Diabetes Rev 1: 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Karanjawala ZE, Murphy N, Hinton DR, Hsieh CL, Lieber MR . (2002). Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr Biol 12: 397–402.

    Article  CAS  PubMed  Google Scholar 

  • Karmakar P, Snowden CM, Ramsden DA, Bohr VA . (2002). Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30: 3583–3591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohda Y, Gemba M . (2005). Cephaloridine induces translocation of protein kinase C delta into mitochondria and enhances mitochondrial generation of free radicals in the kidney cortex of rats causing renal dysfunction. J Pharmacol Sci 98: 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U et al. (1997). Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci USA 94: 11233–11237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Comai L . (2000). Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J Biol Chem 275: 28349–28352.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xu Q . (2000). Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12: 435–445.

    Article  CAS  PubMed  Google Scholar 

  • Marciniak RA, Lombard DB, Johnson FB, Guarente L . (1998). Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 95: 6887–6892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massip L, Garand C, Turaga RV, Deschênes F, Thorin E, Lebel M . (2006). Increased insulin, triglycerides, reactive oxygen species, and cardiac fibrosis in mice with a mutation in the helicase domain of the Werner syndrome gene homologue. Exp Gerontol 41: 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Massip L, Garand C, Paquet E, Cogger VC, O'Reilly J, Tworek L et al. (2009). Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J 2009 (e-pub ahead of print 9 September 2009; doi:fj.09-137133).

  • McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ . (2002). The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62: 1261–1273.

    Article  CAS  PubMed  Google Scholar 

  • Melcher R, von Golitschek R, Steinlein C, Schindler D, Neitzel H, Kainer K et al. (2000). Spectral karyotyping of Werner syndrome fibroblast cultures. Cytogenet Cell Genet 91: 180–185.

    Article  CAS  PubMed  Google Scholar 

  • Min W, Bin ZW, Quan ZB, Hui ZJ, Sheng FG . (2009). The signal transduction pathway of PKC/NF-kappaB/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats. Cardiovasc Diabetol 8: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitti M, Pronzato MA, Marinari UM, Domenicotti C . (2008). PKC signaling in oxidative hepatic damage. Mol Aspects Med 29: 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Ohmori S, Shirai Y, Sakai N, Fujii M, Konishi H, Kikkawa U et al. (1998). Three distinct mechanisms for translocation and activation of the delta subspecies of protein kinase C. Mol Cell Biol 18: 5263–5271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA . (2002). Telomere-binding protein TRF2 binds to and stimulâtes the Werner and Bloom syndrome helicases. J Biol Chem 277: 41110–41119.

    Article  CAS  PubMed  Google Scholar 

  • Osmanagic-Myers S, Wiche G . (2004). Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J Biol Chem 279: 18701–18710.

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani E, Franchini A, Kletsas D . (2001). Platelet-derived growth factor and transforming growth factor-beta in invertebrate immune and neuroendocrine interactions: another sign of conservation in evolution. Comp Biochem Physiol C Toxicol Pharmacol 129: 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Pagano G, Zatterale A, Degan P, d'Ischia M, Kelly FJ, Pallardó FV et al. (2005). in vivo prooxidant state in Werner syndrome (WS): results from three WS patients and two WS heterozygotes. Free Radic Res 39: 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Parekh D, Ziegler W, Yonezawa K, Hara K, Parker PJ . (1999). Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon. J Biol Chem 274: 34758–34764.

    Article  CAS  PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5: 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascale A, Fortino I, Govoni S, Trabucchi M, Wetsel WC, Battaini F . (1996). Functional impairment in protein kinase C by RACK1 (receptor for activated Ckinase 1) deficiency in aged rat brain cortex. J Neurochem 67: 2471–2477.

    Article  CAS  PubMed  Google Scholar 

  • Pass JM, Gao J, Jones WK, Wead WB, Wu X, Zhang J et al. (2001). Enhanced PKC beta II translocation and PKC beta II-RACK1 interactions in PKC epsilon-induced heart failure: a role for RACK1. Am J Physiol Heart Circ Physiol 281: H2500–H2510.

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  • Sajan MP, Rivas J, Li P, Standaert ML, Farese RV . (2006). Repletion of atypical protein kinase C following RNA interference-mediated depletion restores insulin-stimulated glucose transport. J Biol Chem 281: 17466–17473.

    Article  CAS  PubMed  Google Scholar 

  • Sedding DG . (2008). FoxO transcription factors in oxidative stress response and ageing––a new fork on the way to longevity? Biol Chem 389: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Slager RE, Devasure JM, Pavlik JA, Sisson JH, Wyatt TA . (2008). RACK1, a PKC targeting protein, is exclusively localized to basal airway epithelial cells. J Histochem Cytochem 56: 7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stawowy P, Margeta C, Blaschke F, Lindschau C, Spencer-Hänsch C, Leitges M et al. (2005). Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts. Cardiovasc Res 67: 50–59.

    Article  CAS  PubMed  Google Scholar 

  • Szekely AM, Bleichert F, Numann A, Van Komen S, Manasanch E, Ben Nasr A et al. (2005). Werner protein protects nonproliferating cells from oxidative DNA damage. Mol Cell Biol 25: 10492–10506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turaga RV, Massip L, Chavez A, Johnson FB, Lebel M . (2007). Werner syndrome protein prevents DNA breaks upon chromatin structure alteration. Aging Cell 6: 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Turaga RV, Paquet ER, Sild M, Vignard J, Garand C, Johnson FB et al. (2009). The Werner syndrome protein affects the expression of genes involved in adipogenesis inflammation in addition to cell cycle DNA damage responses. Cell Cycle 8: 2080–2092.

    Article  CAS  PubMed  Google Scholar 

  • von Kobbe C, Bohr VA . (2002). A nucleolar targeting sequence in the Werner syndrome protein resides within residues 949–1092. J Cell Sci 115: 3901–3907.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jiang L, Huang C, Li Z, Chen L, Gou L et al. (2008). Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics 7: 1639–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Wang HG, Miki Y, Kufe D . (2003). Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 22: 1431–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mrs N Roberge for the FACS analyses (Centre de Recherche en Cancérologie, Quebec City, Qc). This study was supported by the Canadian Institutes of Health Research to ML and in part by funds from the intramural Program of the National Institute on Aging, NIH to VAB. ML is a senior scholar from the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lebel.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massip, L., Garand, C., Labbé, A. et al. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms. Oncogene 29, 1486–1497 (2010). https://doi.org/10.1038/onc.2009.443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.443

Keywords

This article is cited by

Search

Quick links