Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Palladin contributes to invasive motility in human breast cancer cells

Abstract

Cancer metastasis involves multiple steps including detachment of the metastatic cells from neighboring cells, the acquisition of motility and invasion to other tissue. All of these steps require the reorganization of the actin cytoskeleton. In this study, we found that the protein palladin, a molecular scaffold with an important function in actin organization, is expressed at higher overall levels in tumors compared with benign breast tissue, and also expressed significantly higher in four invasive breast cancer cell lines when compared with four non-invasive cell lines. In addition, we found that palladin plays a key role in the formation of podosomes. Podosomes are actin-rich structures that function in adhesion and matrix degradation, and have been found in many invasive cell types. Our results show that phorbol ester treatment stimulated the formation of palladin-containing podosomes in invasive, but not in non-invasive cell lines. More importantly, palladin knockdown resulted in decreased podosome formation and a significant reduction in transwell migration and invasive motility. Palladin overexpression induced podosome formation in the non-invasive MCF7 cells, which are otherwise unable to form podosomes, suggesting that palladin plays a critical role in the assembly of podosomes. Overall, these results indicate that palladin overexpression contributes to the invasive behavior of metastatic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Boukhelifa M, Hwang SJ, Valtschanoff JG, Meeker RB, Rustioni A, Otey CA . (2003). A critical role for palladin in astrocyte morphology and response to injury. Mol Cell Neurosci 23: 661–668.

    Article  CAS  Google Scholar 

  • Boukhelifa M, Moza M, Johansson T, Rachlin A, Parast M, Huttelmaier S et al. (2006). The proline-rich protein palladin is a binding partner for profilin. FEBS J 273: 26–33.

    Article  CAS  Google Scholar 

  • Boukhelifa M, Parast MM, Bear JE, Gertler FB, Otey CA . (2004). Palladin is a novel binding partner for Ena/VASP family members. Cell Motil Cytoskeleton 58: 17–29.

    Article  CAS  Google Scholar 

  • Boukhelifa M, Parast MM, Valtschanoff JG, LaMantia AS, Meeker RB, Otey CA . (2001). A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Mol Biol Cell 12: 2721–2729.

    Article  CAS  PubMed Central  Google Scholar 

  • Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC . (1999). An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440–4449.

    Article  CAS  Google Scholar 

  • Buccione R, Orth JD, McNiven MA . (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5: 647–657.

    Article  CAS  Google Scholar 

  • Calle Y, Burns S, Thrasher AJ, Jones GE . (2006). The leukocyte podosome. Eur J Cell Biol 85: 151–157.

    Article  CAS  Google Scholar 

  • Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD et al. (2007). Transcellular diapedesis is initiated by invasive podosomes. Immunity 26: 784–797.

    Article  CAS  PubMed Central  Google Scholar 

  • Di Modugno F, DeMonte L, Balsamo M, Bronzi G, Nicotra MR, Alessio M et al. (2007). Molecular cloning of hMena (ENAH) and its splice variant hMena+11a: epidermal growth factor increases their expression and stimulates hMena+11a phosphorylation in breast cancer cell lines. Cancer Res 67: 2657–2665.

    Article  CAS  PubMed Central  Google Scholar 

  • Dixon RD, Arneman DK, Rachlin AS, Sundaresan NR, Costello MJ, Campbell SL et al. (2008). Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. J Biol Chem 283: 6222–6231.

    Article  CAS  Google Scholar 

  • Dumitrescu RG, Cotarla I . (2005). Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9: 208–221.

    Article  CAS  Google Scholar 

  • Flanagan L, Van Weelden K, Ammerman C, Ethier SP, Welsh J . (1999). SUM-159PT cells: a novel estrogen independent human breast cancer model system. Breast Cancer Res Treat 58: 193–204.

    Article  CAS  Google Scholar 

  • Gimona M, Buccione R . (2006). Adhesions that mediate invasion. Int J Biochem Cell Biol 38: 1875–1892.

    Article  CAS  Google Scholar 

  • Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G . (2003). Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell 14: 2482–2491.

    Article  CAS  PubMed Central  Google Scholar 

  • Goicoechea S, Arneman D, Disanza A, Garcia-Mata R, Scita G, Otey CA . (2006). Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J Cell Sci 119: 3316–3324.

    Article  CAS  Google Scholar 

  • Gringel A, Walz D, Rosenberger G, Minden A, Kutsche K, Kopp P et al. (2006). PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J Cell Physiol 209: 568–579.

    Article  CAS  Google Scholar 

  • Grunewald TG, Kammerer U, Kapp M, Eck M, Dietl J, Butt E et al. (2007a). Nuclear localization and and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma. BMC Cancer 7: 198.

    Article  PubMed Central  Google Scholar 

  • Grunewald TG, Kammerer U, Schulze E, Schindler D, Honig A, Zimmer M et al. (2006). Silencing of LASP-1 influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Exp Cell Res 312: 974–982.

    Article  CAS  Google Scholar 

  • Grunewald TG, Kammerer U, Winkler C, Schindler D, Sickmann A, Honig A et al. (2007b). Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation. Br J Cancer 96: 296–305.

    Article  CAS  PubMed Central  Google Scholar 

  • Hai CM, Hahne P, Harrington EO, Gimona M . (2002). Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. Exp Cell Res 280: 64–74.

    Article  CAS  Google Scholar 

  • Hatakeyama H, Kondo T, Fujii K, Nakanishi Y, Kato H, Fukuda S et al. (2006). Protein clusters associated with carcinogenesis, histological differentiation and nodal metastasis in esophageal cancer. Proteomics 6: 6300–6316.

    Article  CAS  Google Scholar 

  • Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 140: 1383–1393.

    Article  CAS  PubMed Central  Google Scholar 

  • Jin L, Kern MJ, Otey CA, Wamhoff BR, Somlyo AV . (2007). Angiotensin II, focal adhesion kinase, and PRX1 enhance smooth muscle expression of lipoma preferred partner and its newly identified binding partner palladin to promote cell migration. Circ Res 100: 817–825.

    Article  CAS  Google Scholar 

  • Kelly T, Yan Y, Osborne RL, Athota AB, Rozypal TL, Colclasure JC et al. (1998). Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis 16: 501–512.

    Article  CAS  Google Scholar 

  • Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Res 65: 6130–6138.

    Article  CAS  Google Scholar 

  • Lin YH, Park ZY, Lin D, Brahmbhatt AA, Rio MC, Yates III JR et al. (2004). Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J Cell Biol 165: 421–432.

    Article  CAS  PubMed Central  Google Scholar 

  • Linder S . (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17: 107–117.

    Article  CAS  Google Scholar 

  • Linder S, Aepfelbacher M . (2003). Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13: 376–385.

    Article  CAS  Google Scholar 

  • Luo H, Liu X, Wang F, Huang Q, Shen S, Wang L et al. (2005). Disruption of palladin results in neural tube closure defects in mice. Mol Cell Neurosci 29: 507–515.

    Article  CAS  Google Scholar 

  • Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC et al. (1994). A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54: 5702–5710.

    CAS  PubMed  Google Scholar 

  • Mykkanen OM, Gronholm M, Ronty M, Lalowski M, Salmikangas P, Suila H et al. (2001). Characterization of human palladin, a microfilament-associated protein. Mol Biol Cell 12: 3060–3073.

    Article  CAS  PubMed Central  Google Scholar 

  • Parast MM, Otey CA . (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 150: 643–656.

    Article  CAS  PubMed Central  Google Scholar 

  • Pogue-Geile KL, Chen R, Bronner MP, Crnogorac-Jurcevic T, Moyes KW, Dowen S et al. (2006). Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3: e516.

    Article  PubMed Central  Google Scholar 

  • Rachlin AS, Otey CA . (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J Cell Sci 119: 995–1004.

    Article  CAS  Google Scholar 

  • Ronty M, Taivainen A, Heiska L, Otey C, Ehler E, Song WK et al. (2007). Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res 313: 2575–2585.

    Article  PubMed Central  Google Scholar 

  • Ronty M, Taivainen A, Moza M, Kruh GD, Ehler E, Carpen O . (2005). Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp Cell Res 310: 88–98.

    Article  Google Scholar 

  • Ronty M, Taivainen A, Moza M, Otey CA, Carpen O . (2004). Molecular analysis of the interaction between palladin and alpha-actinin. FEBS Lett 566: 30–34.

    Article  CAS  Google Scholar 

  • Ronty MJ, Leivonen SK, Hinz B, Rachlin A, Otey CA, Kahari VM et al. (2006). Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation. J Invest Dermatol 126: 2387–2396.

    Article  Google Scholar 

  • Roy P, Jacobson K . (2004). Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil Cytoskeleton 57: 84–95.

    Article  CAS  Google Scholar 

  • Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE . (2001). Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res 61: 1833–1838.

    CAS  PubMed  Google Scholar 

  • Seals DF, Azucena Jr EF, Pass I, Tesfay L, Gordon R, Woodrow M et al. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7: 155–165.

    Article  CAS  Google Scholar 

  • Suehara Y, Kondo T, Fujii K, Hasegawa T, Kawai A, Seki K et al. (2006). Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas. Proteomics 6: 4402–4409.

    Article  CAS  Google Scholar 

  • Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64: 8585–8594.

    Article  CAS  Google Scholar 

  • Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS . (2005). Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15: 138–145.

    Article  CAS  Google Scholar 

  • Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J . (2007). Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett 255: 205–218.

    Article  CAS  Google Scholar 

  • Wittenmayer N, Jandrig B, Rothkegel M, Schluter K, Arnold W, Haensch W et al. (2004). Tumor suppressor activity of profilin requires a functional actin binding site. Mol Biol Cell 15: 1600–1608.

    Article  CAS  PubMed Central  Google Scholar 

  • Yamaguchi H, Condeelis J . (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773: 642–652.

    Article  CAS  Google Scholar 

  • Yamaguchi H, Pixley F, Condeelis J . (2006). Invadopodia and podosomes in tumor invasion. Eur J Cell Biol 85: 213–218.

    Article  CAS  Google Scholar 

  • Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A et al. (2001). Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61: 5168–5178.

    CAS  Google Scholar 

  • Zhang J, Park SI, Artime MC, Summy JM, Shah AN, Bomser JA et al. (2007). AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts. J Clin Invest 117: 2962–2973.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the following former lab members for their assistance in the early stages of this project: Dr Mana Parast, Amir Aghajanian and Xinshuo Wang. We thank Xiaoya Ding and Dave Cowan for help with immunohistochemistry. We also thank Dr Cercina Onesto for kindly sharing the breast cancer cell lines. This work was supported by NIH Grant GM61743 (to CO). HJK was supported by NIH K08 Grant CA098240 and BB was supported by NIH training Grant CA09688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Goicoechea.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goicoechea, S., Bednarski, B., García-Mata, R. et al. Palladin contributes to invasive motility in human breast cancer cells. Oncogene 28, 587–598 (2009). https://doi.org/10.1038/onc.2008.408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.408

Keywords

This article is cited by

Search

Quick links