Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Ha-Ras transformation of MCF10A cells leads to repression of Singleminded-2s through NOTCH and C/EBPβ

Abstract

We have previously shown that Singleminded-2s (SIM2s), a member of the basic helix-loop-helix Per-Arnt-Sim (bHLH/PAS) family of transcription factors, is downregulated in breast cancer samples and has tumor suppressor activity. However, the mechanism by which SIM2s is repressed in breast cancer cells has not been determined. In this study, we show that transformation of MCF10A cells by Harvey-Ras (Ha-Ras) induces CCAAT/enhance binding protein β (C/EBPβ) and activates the NOTCH signaling pathway to block SIM2s gene expression. NOTCH-mediated repression acts through a C-repeat binding factor 1 (CBF1)-independent mechanism, as introduction of CBF1 had no effect on SIM2s expression. Consistent with C/ebpβ-dependent inhibition of SIM2s, C/ebpβ−/− mouse mammary glands express high levels of SIM2s and reestablishment of C/ebpβ isoforms decreased SIM2s mRNA levels in C/ebpβ immortalized mammary epithelial cell lines. These studies illustrate a novel pathway of tumor suppressor gene silencing in Ha-Ras-transformed breast epithelial cells and identify SIM2s as a target of C/EBPβ and NOTCH signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aleman MJ, DeYoung MP, Tress M, Keating P, Perry GW, Narayanan R . (2005). Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells. Proc Natl Acad Sci USA 102: 12765–12770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin BR, Timchenko NA, Zahnow CA . (2004). Epidermal growth factor receptor stimulation activates the RNA binding protein CUG-BP1 and increases expression of C/EBPbeta-LIP in mammary epithelial cells. Mol Cell Biol 24: 3682–3691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray SJ . (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7: 678–689.

    Article  CAS  PubMed  Google Scholar 

  • Crews S, Franks R, Hu S, Matthews B, Nambu J . (1992). Drosophila single-minded gene and the molecular genetics of CNS midline development. J Exp Zool 261: 234–244.

    Article  CAS  PubMed  Google Scholar 

  • Descombes P, Schibler U . (1991). A liver enriched transcriptional activator protein, LAP, and a transcriptional inhibitors protein, LIP, are transcribed from the same mRNA. Cell 3: 569–579.

    Article  Google Scholar 

  • Deyoung MP, Scheurle D, Damania H, Zylberberg C, Narayanan R . (2002). Down's syndrome-associated single minded gene as a novel tumor marker. Anticancer Res 22: 3149–3157.

    CAS  PubMed  Google Scholar 

  • Dunn KL, Espino PS, Drobic B, He S, Davie JR . (2005). The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massague J . (2006). C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10: 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Grimm SL, Rosen JM . (2003). The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 8: 191–204.

    Article  PubMed  Google Scholar 

  • Halvorsen OJ, Rostad K, Oyan AM, Puntervoll H, Bo TH, Stordrange L et al. (2007). Increased expression of SIM2-s protein is a novel marker of aggressive prostate cancer. Clin Cancer Res 13: 892–897.

    Article  CAS  PubMed  Google Scholar 

  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A . (1995). Signalling downstream of activated mammalian Notch. Nature 377: 355–358.

    Article  CAS  PubMed  Google Scholar 

  • Kewley RJ, Whitelaw ML, Chapman-Smith A . (2004). The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36: 189–204.

    Article  CAS  PubMed  Google Scholar 

  • Khleif SN, Abrams SI, Hamilton JM, Bergmann-Leitner E, Chen A, Bastian A et al. (1999). A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother 22: 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A et al. (2004). Modulation of Notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 165: 695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak HI, Gustafson T, Metz RP, Laffin B, Schedin P, Porter WW . (2007). Inhibition of breast cancer growth and invasion by single-minded 2s. Carcinogenesis 2: 259–266.

    Google Scholar 

  • Laffin B, Wellberg E, Kwak HI, Burghardt RC, Metz RP, Gustafson T et al. (2008). Loss of Singleminded-2s in the mouse mammary gland induces an epithelial mesenchymal transition associated with up-regulation of Slug and MMP2. Mol Cell Biol 28: 1936–1946.

    Article  CAS  PubMed  Google Scholar 

  • Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS et al. (2003). A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dontu G, Wicha MS . (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7: 86–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez Arias A, Zecchini V, Brennan K . (2002). CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12: 524–533.

    Article  PubMed  Google Scholar 

  • Martinez-Lacaci I, Kannan S, De Santis M, Bianco C, Kim N, Wallace-Jones B et al. (2000). RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen-activated protein kinase in human mammary epithelial cells. Int J Cancer 88: 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Metz RP, Kwak HI, Gustafson T, Laffin B, Porter WW . (2006). Differential transcriptional regulation by mouse single-minded 2S. J Biol Chem 281: 10839–10848.

    Article  CAS  PubMed  Google Scholar 

  • Milde-Langosch K, Loning T, Bamberger AM . (2003). Expression of the CCAAT/enhancer-binding proteins C/EBPalpha, C/EBPbeta and C/EBPdelta in breast cancer: correlations with clinicopathologic parameters and cell-cycle regulatory proteins. Breast Cancer Res Treat 79: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Kinoshita S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T et al. (1993). Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci USA 90: 2207–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen LL, Discafani CM, Gurnani M, Tyler RD . (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res 51: 3762–3767.

    CAS  PubMed  Google Scholar 

  • Sansone P, Storci G, Giovannini C, Pandolfi S, Pianetti S, Taffurelli M et al. (2007). p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 25: 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ et al. (1998). C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 12: 1917–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim M, Powers KL, Ewing SJ, Zhu S, Smart RC . (2005). Diminished expression of C/EBPalpha in skin carcinomas is linked to oncogenic Ras and reexpression of C/EBPalpha in carcinoma cells inhibits proliferation. Cancer Res 65: 861–867.

    CAS  PubMed  Google Scholar 

  • Shuman JD, Sebastian T, Kaldis P, Copeland TD, Zhu S, Smart RC et al. (2004). Cell cycle-dependent phosphorylation of C/EBPbeta mediates oncogenic cooperativity between C/EBPbeta and H-RasV12. Mol Cell Biol 24: 7380–7391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K . (2006). Aberrant activation of Notch signaling in human breast cancer. Cancer Res 66: 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  • Sundaram MV . (2005). The love-hate relationship between Ras and Notch. Genes Dev 19: 1825–1839.

    Article  CAS  PubMed  Google Scholar 

  • von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR . (2000). Ras activation in human breast cancer. Breast Cancer Res Treat 62: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A et al. (2002). Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8: 979–986.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Geng Y, Sicinski P . (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  • Zahnow CA . (2002). CCAAT/enhancer binding proteins in normal mammary development and breast cancer. Breast Cancer Res 4: 113–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahnow CA, Cardiff RD, Laucirica R, Medina D, Rosen JM . (2001). A role for CCAAT/enhancer binding protein beta-liver-enriched inhibitory protein in mammary epithelial cell proliferation. Cancer Res 61: 261–269.

    CAS  PubMed  Google Scholar 

  • Zahnow CA, Younes P, Laucirica R, Rosen JM . (1997). Overexpression of C/EBPbeta-LIP, a naturally occurring, dominant-negative transcription factor, in human breast cancer. J Natl Cancer Inst 89: 1887–1891.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC . (2002). CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci USA 99: 207–212.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bryan and Alana Welm (Huntsman Cancer Institute, Salt Lake City, UT, USA) for the Ha-Ras parent construct, Jeff Rosen (Baylor College of Medicine, Houston, TX, USA) for providing the C/ebpβ−/− mammary glands and Michael Lewis (Baylor College of Medicine, Houston, TX, USA) for critical reading of the paper. We also thank Keelan Anderson for technical assistance. This work was supported by awards from the National Cancer Institute RO1CA111551 (WWP), R01CA113795 (CAZ) and Howard Hughes Medical Institute Predoctoral Fellowship (TG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W W Porter.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, T., Wellberg, E., Laffin, B. et al. Ha-Ras transformation of MCF10A cells leads to repression of Singleminded-2s through NOTCH and C/EBPβ. Oncogene 28, 1561–1568 (2009). https://doi.org/10.1038/onc.2008.497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.497

Keywords

This article is cited by

Search

Quick links