Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cooperative effect of p21Cip1/WAF−1 and 14-3-3σ on cell cycle arrest and apoptosis induction by p14ARF

Abstract

P14ARF (p19ARF in the mouse) plays a central role in the regulation of cellular proliferation. Although the capacity of p14ARF to induce a cell cycle arrest in G1 phase depends on a functional p53/p21-signaling axis, the G2 arrest triggered by p14ARF is p53/p21-independent. Using isogeneic HCT116 cells either wild-type or homozygously deleted for p21, 14-3-3σ or both, we further investigated the cooperative effect of p21 and 14-3-3σ on cell cycle regulation and apoptosis induction by p14ARF. In contrast to DNA damage, which induces mitotic catastrophe in 14-3-3σ-deficient cells, we show here that the expression of p14ARF triggers apoptotic cell death, as evidenced by nuclear DNA fragmentation and induction of pan-caspase activities, irrespective of the presence or absence of 14-3-3σ. The activation of the intrinsic mitochondrial apoptosis pathway by p14ARF was confirmed by cytochrome c release from mitochondria and induction of caspase-9- (LEHDase) and caspase-3/7-like (DEVDase) activities. Moreover, 14-3-3σ/p21 double-deficient cells were exceedingly sensitive to apoptosis induction by p14ARF as compared to wild-type cells or cells lacking either gene alone. Notably, p14ARF-induced apoptosis was preceded by an arrest in the G2 phase of cell cycle, which coincided with downregulation of cdc2 (cdk1) protein expression and lack of its nuclear localization. This indicates that p14ARF impairs mitotic entry by targeting the distal DNA damage-signaling pathway and induces apoptotic cell death, rather than mitotic catastrophe, out of a transient G2 arrest. Furthermore, our data delineate that the disruption of G2/M cell cycle checkpoint control critically determines the sensitivity of the cell toward p14ARF-induced mitochondrial apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D et al. (2006a). DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J Biol Chem 281: 8675–8685.

    Article  CAS  PubMed  Google Scholar 

  • Bhonde MR, Hanski ML, Notter M, Gillissen BF, Daniel PT, Zeitz M et al. (2006b). Equivalent effect of DNA damage-induced apoptotic cell death or long-term cell cycle arrest on colon carcinoma cell proliferation and tumour growth. Oncogene 25: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Demidenko ZN, Fojo T . (2002). Inhibition of transcription results in accumulation of Wt p53 followed by delayed outburst of p53-inducible proteins: p53 as a sensor of transcriptional integrity. Cell Cycle 1: 67–74.

    CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . (1999). 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel PT, Sturm I, Ritschel S, Friedrich K, Dörken B, Bendzko P et al. (1999). Detection of genomic DNA fragmentation during apoptosis (DNA ladder) and the simultaneous isolation of RNA from low cell numbers. Anal Biochem 266: 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB et al. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV et al. (1998). E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duro D, Bernard O, Della Valle V, Berger R, Larsen CJ . (1995). A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 11: 21–29.

    CAS  PubMed  Google Scholar 

  • Eymin B, Claverie P, Salon C, Brambilla C, Brambilla E, Gazzeri S . (2006a). p14ARF triggers G2 arrest through ERK-mediated Cdc25C phosphorylation, ubiquitination and proteasomal degradation. Cell Cycle 5: 759–765.

    Article  CAS  PubMed  Google Scholar 

  • Eymin B, Claverie P, Salon C, Leduc C, Col E, Brambilla E et al. (2006b). p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26: 4339–4350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eymin B, Karayan L, Seite P, Brambilla C, Brambilla E, Larsen CJ et al. (2001). Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 20: 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  • Eymin B, Leduc C, Coll JL, Brambilla E, Gazzeri S . (2003). p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 22: 1822–1835.

    Article  CAS  PubMed  Google Scholar 

  • Giannakakou P, Robey R, Fojo T, Blagosklonny MV . (2001). Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 20: 3806–3813.

    Article  CAS  PubMed  Google Scholar 

  • Gorospe M, Wang X, Guyton KZ, Holbrook NJ . (1996). Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells. Mol Cell Biol 16: 6654–6660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves PR, Lovly CM, Uy GL, Piwnica-Worms H . (2001). Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20: 1839–1851.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati PG, Gillissen B, von Haefen C, Wendt J, Starck L, Güner D et al. (2002). Adenovirus-mediated overexpression of p14(ARF) induces p53 and Bax-independent apoptosis. Oncogene 21: 3149–3161.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati PG, Güner D, Gillissen B, Wendt J, von Haefen C, Chinnadurai G et al. (2006). Bak functionally complements for loss of Bax during p14ARF-induced mitochondrial apoptosis in human cancer cells. Oncogene 25: 6582–6594.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati PG, Normand G, Verdoodt B, von Haefen C, Hasenjager A, Güner D et al. (2005). Loss of p21 disrupts p14 ARF-induced G1 cell cycle arrest but augments p14 ARF-induced apoptosis in human carcinoma cells. Oncogene 24: 4114–4128.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H . (2003). The 14-3-3 cancer connection. Nat Rev Cancer 3: 931–943.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Jänicke RU, Sohn D, Essmann F, Schulze-Osthoff K . (2007). The multiple battles fought by anti-apoptotic p21. Cell Cycle 6: 407–413.

    Article  PubMed  Google Scholar 

  • Jin P, Gu Y, Morgan DO . (1996). Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134: 963–970.

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Hardy S, Morgan DO . (1998). Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J Cell Biol 141: 875–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wu D, Chen B, Ingram A, He L, Liu L et al. (2004). ATM activity contributes to the tumor-suppressing functions of p14ARF. Oncogene 23: 7355–7365.

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ et al. (1995). A novel p16INK4A transcript. Cancer Res 55: 2995–2997.

    CAS  PubMed  Google Scholar 

  • Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M et al. (2001). p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci USA 98: 4455–4460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez LA, Yang J, Vazquez ES, Rodriguez-Vargas Mdel C, Olive M, Hsieh JT et al. (2002). p21 modulates threshold of apoptosis induced by DNA-damage and growth factor withdrawal in prostate cancer cells. Carcinogenesis 23: 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO, Fisher RP, Espinoza FH, Farrell A, Nourse J, Chamberlin H et al. (1998). Control of eukaryotic cell cycle progression by phosphorylation of cyclin-dependent kinases. Cancer J Sci Am 4 (Suppl 1): S77–S83.

    PubMed  Google Scholar 

  • Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H et al. (2003). 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 278: 2058–2065.

    Article  CAS  PubMed  Google Scholar 

  • Normand G, Hemmati PG, Verdoodt B, von Haefen C, Wendt J, Güner D et al. (2005). p14ARF induces G2 cell cycle arrest in p53- and p21-deficient cells by down-regulating p34cdc2 kinase activity. J Biol Chem 280: 7118–7130.

    Article  CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ . (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    Article  CAS  PubMed  Google Scholar 

  • Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N . (1998). p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci USA 95: 13194–13199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha S, Campbell KJ, Perkins ND . (2003). p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Mol Cell 12: 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Rocha S, Garrett MD, Campbell KJ, Schumm K, Perkins ND . (2005). Regulation of NF-kappaB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor. EMBO J 24: 1157–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha S, Perkins ND . (2005). ARF the integrator: linking NF-kappaB, p53 and checkpoint kinases. Cell Cycle 4: 756–759.

    Article  CAS  PubMed  Google Scholar 

  • Samuel T, Weber HO, Rauch P, Verdoodt B, Eppel JT, McShea A et al. (2001). The G2/M regulator 14-3-3 sigma prevents apoptosis through sequestration of Bax. J Biol Chem 276: 45201–45206.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H et al. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Sohn D, Essmann F, Schulze-Osthoff K, Jänicke RU . (2006). p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res 66: 11254–11262.

    Article  CAS  PubMed  Google Scholar 

  • Taagepera S, Rao PN, Drake FH, Gorbsky GJ . (1993). DNA topoisomerase II alpha is the major chromosome protein recognized by the mitotic phosphoprotein antibody MPM-2. Proc Natl Acad Sci USA 90: 8407–8411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa CG, Morgan DO . (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12: 658–665.

    Article  CAS  PubMed  Google Scholar 

  • von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT . (2003). Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22: 2236–2247.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B . (1996). Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Wendt J, Radetzki S, von Haefen C, Hemmati PG, Güner D, Schulze-Osthoff K et al. (2006). Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene 25: 972–980.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Piwnica-Worms H . (1999). DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol Cell Biol 19: 7410–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87: 619–628.

    Article  CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Krebshilfe Grant 10-2088-Da3 to PTD and PGH. We would like to thank Ms Antje and Anja Richter for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P T Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmati, P., Normand, G., Gillissen, B. et al. Cooperative effect of p21Cip1/WAF−1 and 14-3-3σ on cell cycle arrest and apoptosis induction by p14ARF. Oncogene 27, 6707–6719 (2008). https://doi.org/10.1038/onc.2008.193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.193

Keywords

This article is cited by

Search

Quick links