Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pituitary tumor transforming gene 1 regulates Aurora kinase A activity

Abstract

Pituitary tumor transforming gene 1 (PTTG1), a transforming gene highly expressed in several cancers, is a mammalian securin protein regulating both G1/S and G2/M phases. Using protein array screening, we showed PTTG1 interacting with Aurora kinase A (Aurora-A), and confirmed the interaction using co-immunoprecipitation, His-tagged pull-down assays and intracellular immunofluorescence colocalization. PTTG1 transfection into HCT116 cells prevented Aurora-A T288 autophosphorylation, inhibited phosphorylation of the histone H3 Aurora-A substrate and resulted in abnormally condensed chromatin. PTTG1-null cell proliferation was more sensitive to Aurora-A knock down and to Aurora kinase Inhibitor III treatment. The results indicate that PTTG1 and Aurora-A interact to regulate cellular responses to anti-neoplastic drugs. PTTG1 knockdown is therefore a potential approach to improve the efficacy of tumor Aurora kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

Aurora-A:

Aurora kinase A

PTTG1:

pituitary tumor transforming gene 1

References

  • Akino K, Akita S, Mizuguchi T, Takumi I, Yu R, Wang XY et al. (2005). A novel molecular marker of pituitary tumor transforming gene involves in a rat liver regeneration. J Surg Res 129: 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Bernal JA, Hernandez A . (2007). p53 stabilization can be uncoupled from its role in transcriptional activation by loss of PTTG1/securin. J Biochem (Tokyo) 141: 737–745.

    Article  CAS  Google Scholar 

  • Bernal JA, Luna R, Espina A, Lazaro I, Ramos-Morales F, Romero F et al. (2002). Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 32: 306–311.

    Article  CAS  PubMed  Google Scholar 

  • Bernal JA, Roche M, Mendez-Vidal C, Espina A, Tortolero M, Pintor-Toro JA . (2008). Proliferative potential after DNA damage and non-homologous end joining are affected by loss of securin. Cell Death Differ 15: 202–212.

    Article  CAS  PubMed  Google Scholar 

  • Boelaert K, Tannahill LA, Bulmer JN, Kachilele S, Chan SY, Kim D et al. (2003). A potential role for PTTG/securin in the developing human fetal brain. FASEB J 17: 1631–1639.

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Anderson S, Jwa M, Green EM, Kang J, Yates III JR et al. (2002). Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111: 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Chen SS, Chang PC, Cheng YW, Tang FM, Lin YS . (2002). Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J 21: 4491–4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien W, Pei L . (2000). A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J Biol Chem 275: 19422–19427.

    Article  CAS  PubMed  Google Scholar 

  • Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H et al. (2002). Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol 22: 874–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donangelo I, Gutman S, Horvath E, Kovacs K, Wawrowsky K, Mount M et al. (2006). Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology 147: 4781–4791.

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar SM, Malik MT, Kakar SS . (2007). Small interfering RNA against PTTG: a novel therapy for ovarian cancer. Int J Oncol 31: 137–143.

    CAS  PubMed  Google Scholar 

  • Eyers PA, Erikson E, Chen LG, Maller JL . (2003a). A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13: 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Eyers PA, Erikson E, Chen LG, Maller JL . (2003b). A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13: 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Gadea BB, Ruderman JV . (2005). Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 16: 1305–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Bernabe AM, Romero F, Limon-Mortes MC, Tortolero M . (2006). Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol Cell Biol 26: 4017–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S . (1999). Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 5: 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  • Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S . (2000). Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 355: 716–719.

    Article  CAS  PubMed  Google Scholar 

  • Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M et al. (2003). Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114: 585–598.

    Article  CAS  PubMed  Google Scholar 

  • Horn V, Thelu J, Garcia A, biges-Rizo C, Block MR, Viallet J . (2007). Functional interaction of Aurora-A and PP2A during mitosis. Mol Biol Cell 18: 1233–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornig NC, Knowles PP, McDonald NQ, Uhlmann F . (2002). The dual mechanism of separase regulation by securin. Curr Biol 12: 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich JA . (2006). Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell 11: 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Ikezoe T, Yang J, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y et al. (2007). A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6: 1851–1857.

    Article  CAS  PubMed  Google Scholar 

  • Kakar SS, Malik MT . (2006). Suppression of lung cancer with siRNA targeting PTTG. Int J Oncol 29: 387–395.

    CAS  PubMed  Google Scholar 

  • Kim DS, Buchanan MA, Stratford AL, Watkinson JC, Eggo MC, Franklyn JA et al. (2006). PTTG promotes a novel VEGF–KDR–ID3 autocrine mitogenic pathway in thyroid cancer. Clin Otolaryngol 31: 246.

    Article  Google Scholar 

  • Kim DS, Franklyn JA, Smith VE, Stratford AL, Pemberton HN, Warfield A et al. (2007). Securin induces genetic instability in colorectal cancer by inhibiting double-stranded DNA repair activity. Carcinogenesis 28: 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Krystyniak A, Garcia-Echeverria C, Prigent C, Ferrari S . (2006). Inhibition of Aurora A in response to DNA damage. Oncogene 25: 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Xin D, Bai J, Mao Z, Na Y . (2007). The important anti-apoptotic role and its regulation mechanism of PTTG1 in UV-induced apoptosis. J Biochem Mol Biol 40: 966–972.

    CAS  PubMed  Google Scholar 

  • Li JJ, Li SA . (2006). Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 111: 974–984.

    Article  CAS  PubMed  Google Scholar 

  • Li M, York JP, Zhang P . (2007). Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol Cell Biol 27: 3481–3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindon C, Pines J . (2004). Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 164: 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y et al. (2002). Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7: 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  • McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S et al. (2003). Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin Endocrinol (Oxf) 58: 141–150.

    Article  CAS  Google Scholar 

  • Mountzios G, Terpos E, Dimopoulos MA . (2008). Aurora kinases as targets for cancer therapy. Cancer Treat Rev 34: 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi S, Sakashita G, Ban R, Nagasawa M, Matsuzaki H, Murata Y et al. (2006). Phospho-regulation of human protein kinase Aurora-A: analysis using anti-phospho-Thr288 monoclonal antibodies. Oncogene 25: 7691–7702.

    Article  CAS  PubMed  Google Scholar 

  • Pascreau G, Arlot-Bonnemains Y, Prigent C . (2003). Phosphorylation of histone and histone-like proteins by aurora kinases during mitosis. Prog Cell Cycle Res 5: 369–374.

    PubMed  Google Scholar 

  • Pei L . (1999). Pituitary tumor-transforming gene protein associates with ribosomal protein S10 and a novel human homologue of DnaJ in testicular cells. J Biol Chem 274: 3151–3158.

    Article  CAS  PubMed  Google Scholar 

  • Pei L . (2000). Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem 275: 31191–31198.

    Article  CAS  PubMed  Google Scholar 

  • Pei L . (2001). Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276: 8484–8491.

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Melmed S . (1997). Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11: 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Pereira G, Schiebel E . (2003). Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302: 2120–2124.

    Article  CAS  PubMed  Google Scholar 

  • Prigent C, Dimitrov S . (2003). Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116: 3677–3685.

    Article  CAS  PubMed  Google Scholar 

  • Saez C, Japon MA, Ramos-Morales F, Romero F, Segura DI, Tortolero M et al. (1999). hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 18: 5473–5476.

    Article  CAS  PubMed  Google Scholar 

  • Sheleg SV, Peloponese JM, Chi YH, Li Y, Eckhaus M, Jeang KT . (2007). Evidence for co-operative transforming activity of human pituitary tumor transforming gene (PTTG) and HTLV-1 Tax. J Virol 81: 7894–7901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solbach C, Roller M, Fellbaum C, Nicoletti M, Kaufmann M . (2004). PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence. Breast 13: 80–81.

    Article  PubMed  Google Scholar 

  • Sun C, Chan F, Briassouli P, Linardopoulos S . (2007). Aurora kinase inhibition downregulates NF-kappaB and sensitises tumour cells to chemotherapeutic agents. Biochem Biophys Res Commun 352: 220–225.

    Article  CAS  PubMed  Google Scholar 

  • Tarabykin V, Britanova O, Fradkov A, Voss A, Katz LS, Lukyanov S et al. (2000). Expression of PTTG and prc1 genes during telencephalic neurogenesis. Mech Dev 92: 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Tan Y, Zhou C, Melmed S . (2007). Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene 26: 5596–5605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlotides G, Eigler T, Melmed S . (2007). Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 28: 165–186.

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Hager C, Bastians H . (2007). Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res 67: 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Kienitz A, Muller R, Bastians H . (2005). The mitotic spindle checkpoint is a critical determinant for topoisomerase-based chemotherapy. J Biol Chem 280: 4025–4028.

    Article  CAS  PubMed  Google Scholar 

  • Waizenegger I, Gimenez-Abian JF, Wernic D, Peters JM . (2002). Regulation of human separase by securin binding and autocleavage. Curr Biol 12: 1368–1378.

    Article  CAS  PubMed  Google Scholar 

  • Walter AO, Seghezzi W, Korver W, Sheung J, Lees E . (2000). The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19: 4906–4916.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu D, Wang Y, Qin J, Elledge SJ . (2001a). Pds1 phosphorylation in response to DNA damage is essential for its DNA damage checkpoint function. Genes Dev 15: 1361–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Melmed S . (2000). Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J Biol Chem 275: 7459–7461.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Moro E, Kovacs K, Yu R, Melmed S . (2003). Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Proc Natl Acad Sci USA 100: 3428–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yu R, Melmed S . (2001b). Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol Endocrinol 15: 1870–1879.

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X . (2008). GPS 2.0: prediction of kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics; e-pub ahead of print.

  • Yang H, He L, Kruk P, Nicosia SV, Cheng JQ . (2006). Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 119: 2304–2312.

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Lu W, Chen J, McCabe CJ, Melmed S . (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology 144: 4991–4998.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Hirota T, Marumoto T, Shimizu M, Kunitoku N, Sasayama T et al. (2004). Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 23: 8720–8730.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Shimizu T, Araki N, Hirota T, Yoshie M, Ogawa K et al. (2008). Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene; e-pub ahead of print.

  • Zhang Y, Ni J, Huang Q, Ren W, Yu L, Zhao S . (2007). Identification of the auto-inhibitory domains of Aurora-A kinase. Biochem Biophys Res Commun 357: 347–352.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Zou H, McGarry TJ, Bernal T, Kirschner MW . (1999). Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285: 418–422.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PTTG1 WT and KO HCT116 cells were kindly provided by Dr Bert Vogelstein, Johns Hopkins University. PTTG1-GFP and PTTG1-PCDNA3.1 plasmids were kindly provided by Dr Run Yu. Supported by NIH Grant CA 75979 (SM), T32 DK007770, and The Doris Factor Molecular Endocrinology Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Melmed.

Additional information

Disclosure

The authors state no conflict of interest.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, Y., Ben-Shlomo, A., Zhou, C. et al. Pituitary tumor transforming gene 1 regulates Aurora kinase A activity. Oncogene 27, 6385–6395 (2008). https://doi.org/10.1038/onc.2008.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.234

Keywords

This article is cited by

Search

Quick links