Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol ζ

Abstract

Cell cycle checkpoints and DNA repair act in concert to ensure DNA integrity during perturbation of normal replication or in response to genotoxic agents. Deficiencies in these protective mechanisms can lead to cellular transformation and ultimately tumorigenesis. Here we focused on Rev3, the catalytic subunit of the low-fidelity DNA repair polymerase ζ. Rev3 is believed to play a role in double-strand break (DSB)-induced DNA repair by homologous recombination. In line with this hypothesis, we show the accumulation of chromatin-bound Rev3 protein in late S–G2 of untreated cells and in response to clastogenic DNA damage as well as an γ-H2AX accumulation in Rev3-depleted cells. Moreover, serine 995 of Rev3 is in vitro phosphorylated by the DSB-inducible checkpoint kinase, Chk2. Our data also disclose a significant reduction of rev3 gene expression in 74 colon carcinomas when compared to the normal adjacent tissues. This reduced expression is independent of the carcinoma stages, suggesting that the downregulation of rev3 might have occurred early during tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barbour L, Ball LG, Zhang K, Xiao W . (2006). DNA damage checkpoints are involved in postreplication repair. Genetics 174: 1789–1800.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J, Bartkova J . (2007). DNA damage response as an anti-cancer barrier: damage threshold and the concept of ‘conditional haploinsufficiency’. Cell Cycle 6: 2344–2347.

    Article  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Bavoux C, Leopoldino AM, Bergoglio V, O-Wang J, Ogi T, Bieth A et al. (2005). Up-regulation of the error-prone DNA polymerase {kappa} promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res 65: 325–330.

    CAS  PubMed  Google Scholar 

  • Bindra RS, Crosby ME, Glazer PM . (2007). Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26: 249–260.

    Article  CAS  Google Scholar 

  • Blais V, Gao H, Elwell CA, Boddy MN, Gaillard PH, Russell P et al. (2004). RNA interference inhibition of Mus81 reduces mitotic recombination in human cells. Mol Biol Cell 15: 552–562.

    Article  CAS  Google Scholar 

  • Boddy MN, Lopez-Girona A, Shanahan P, Interthal H, Heyer WD, Russell P . (2000). Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol Cell Biol 20: 8758–8766.

    Article  CAS  Google Scholar 

  • Brondello JM, Ducommun B, Fernandez A, Lamb NJ . (2007). Linking PCNA-dependent replication and ATR by human Claspin. Biochem Biophys Res Commun 354: 1028–1033.

    Article  CAS  Google Scholar 

  • Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ . (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462–42467.

    Article  CAS  Google Scholar 

  • Canitrot Y, Capp JP, Puget N, Bieth A, Lopez B, Hoffmann JS et al. (2004). DNA polymerase beta overexpression stimulates the Rad51-dependent homologous recombination in mammalian cells. Nucleic Acids Res 32: 5104–5112.

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N . (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1: 581–585.

    Article  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  Google Scholar 

  • Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K et al. (2003). Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 22: 6621–6630.

    Article  CAS  Google Scholar 

  • Hochegger H, Sonoda E, Takeda S . (2004). Post-replication repair in DT40 cells: translesion polymerases versus recombinases. Bioessays 26: 151–158.

    Article  CAS  Google Scholar 

  • Ishikawa K, Ishii H, Saito T . (2006). DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol 25: 406–411.

    Article  CAS  Google Scholar 

  • Johnson RE, Torres-Ramos CA, Izumi T, Mitra S, Prakash S, Prakash L . (1998). Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev 12: 3137–3143.

    Article  CAS  Google Scholar 

  • Kai M, Wang TS . (2003). Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17: 64–76.

    Article  CAS  Google Scholar 

  • Laiho M, Latonen L . (2003). Cell cycle control, DNA damage checkpoints and cancer. Ann Med 35: 391–397.

    Article  CAS  Google Scholar 

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811–816.

    Article  CAS  Google Scholar 

  • Lawrence CW, Hinkle DC . (1996). DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv 28: 21–31.

    CAS  PubMed  Google Scholar 

  • Lemee F, Bavoux C, Pillaire MJ, Bieth A, Machado CR, Pena SD et al. (2007). Characterization of promoter regulatory elements involved in downexpression of the DNA polymerase kappa in colorectal cancer. Oncogene 26: 3387–3394.

    Article  CAS  Google Scholar 

  • Liang F, Han M, Romanienko PJ, Jasin M . (1998). Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95: 5172–5177.

    Article  CAS  Google Scholar 

  • Lisby M, Antunez de Mayolo A, Mortensen UH, Rothstein R . (2003). Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle 2: 479–483.

    Article  CAS  Google Scholar 

  • Lisby M, Barlow JH, Burgess RC, Rothstein R . (2004). Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699–713.

    Article  CAS  Google Scholar 

  • Lisby M, Rothstein R . (2004). DNA damage checkpoint and repair centers. Curr Opin Cell Biol 16: 328–334.

    Article  CAS  Google Scholar 

  • Liu VF, Bhaumik D, Wang TS . (1999). Mutator phenotype induced by aberrant replication. Mol Cell Biol 19: 1126–1135.

    Article  CAS  Google Scholar 

  • McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC . (2005). Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20: 783–792.

    Article  CAS  Google Scholar 

  • Melo J, Toczyski D . (2002). A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14: 237–245.

    Article  CAS  Google Scholar 

  • Nelson JR, Lawrence CW, Hinkle DC . (1996). Thymine–thymine dimer bypass by yeast DNA polymerase zeta. Science 272: 1646–1649.

    Article  CAS  Google Scholar 

  • O’Neill T, Giarratani L, Chen P, Iyer L, Lee CH, Bobiak M et al. (2002). Determination of substrate motifs for human Chk1 and hCds1/Chk2 by the oriented peptide library approach. J Biol Chem 277: 16102–16115.

    Article  Google Scholar 

  • Rattray AJ, Strathern JN . (2003). Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37: 31–66.

    Article  CAS  Google Scholar 

  • Rattray AJ, Strathern JN . (2005). Homologous recombination is promoted by translesion polymerase poleta. Mol Cell 20: 658–659.

    Article  Google Scholar 

  • Sabbioneda S, Minesinger BK, Giannattasio M, Plevani P, Muzi-Falconi M, Jinks-Robertson S . (2005). The 9-1-1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polzeta-dependent mutagenesis in Saccharomyces cerevisiae. J Biol Chem 280: 38657–38665.

    Article  CAS  Google Scholar 

  • Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J et al. (2007). Human CtIP promotes DNA end resection. Nature 450: 509–514.

    Article  CAS  Google Scholar 

  • Slupphaug G, Kavli B, Krokan HE . (2003). The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531: 231–251.

    Article  CAS  Google Scholar 

  • Sonoda E, Okada T, Zhao GY, Tateishi S, Araki K, Yamaizumi M et al. (2003). Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J 22: 3188–3197.

    Article  CAS  Google Scholar 

  • Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J et al. (2005). The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7: 195–201.

    Article  CAS  Google Scholar 

  • Strathern JN, Shafer BK, McGill CB . (1995). DNA synthesis errors associated with double-strand-break repair. Genetics 140: 965–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Raychaudhuri P, Costa RH . (2007). Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 27: 1007–1016.

    Article  CAS  Google Scholar 

  • Todorov IT, Attaran A, Kearsey SE . (1995). BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J Cell Biol 129: 1433–1445.

    Article  CAS  Google Scholar 

  • Van Sloun PP, Varlet I, Sonneveld E, Boei JJ, Romeijn RJ, Eeken JC et al. (2002). Involvement of mouse Rev3 in tolerance of endogenous and exogenous DNA damage. Mol Cell Biol 22: 2159–2169.

    Article  CAS  Google Scholar 

  • Yamamoto K, Kobayashi M, Shimizu H . (2006). ATM, a paradigm for a stress-responsive signal transducer in higher vertebrate cells. Subcell Biochem 40: 327–339.

    Article  Google Scholar 

  • Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT et al. (2004). Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24: 708–718.

    Article  CAS  Google Scholar 

  • Zhu F, Zhang M . (2003). DNA polymerase zeta: new insight into eukaryotic mutagenesis and mammalian embryonic development. World J Gastroenterol 9: 1165–1169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Professor CW Lawrence for providing Rev3 cDNA and Dr C Jorgensen for gift of human mesenchymal stem cells. We also greatly thank R Guimbaud and K Gordien (Inserm/CHU Purpan, Toulouse) for collection and annotation of the tumors, as well as JM Maoret from the plateforme de ‘Génomique et Biologie Moléculaire’, IFR31 Toulouse for his technical help on the 7900HT fast real-time PCR systems. This work was supported by the Canceropole Grand Sud Ouest grant 2003-2006 and the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-M Brondello.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brondello, JM., Pillaire, M., Rodriguez, C. et al. Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol ζ. Oncogene 27, 6093–6101 (2008). https://doi.org/10.1038/onc.2008.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.212

Keywords

This article is cited by

Search

Quick links