Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Myc and β-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice

Abstract

Primitive neuroectodermal tumors (PNETs) are a family of primary malignant brain tumors that include medulloblastomas. Although genetic models of a subset of medulloblastomas are documented over the past decade, the molecular basis of other subclasses of PNET remains unclear. As elevated c-Myc expression, activation of Wnt/β-catenin signaling and dysfunction of p53 are seen in human PNETs, we investigated what role these abnormalities have in the formation of PNETs. Incorporating these abnormalities, we generated supratentorial PNET (sPNET) in mice using somatic cell gene transfer. We show that sPNETs arise from GFAP-expressing cells by forced c-Myc expression combined with p53 inactivation. β-catenin activation promotes tumor progression and induces divergent differentiation. These c-Myc+β-catenin-induced PNETs are histologically similar to large cell/anaplastic medulloblastomas and can occur in both cerebrum and cerebellum. Furthermore, we have obtained one PNET with marked epithelial differentiation having histological resemblance to choroid plexus carcinoma in this series. Our results in mice suggest that sPNET with varied differentiation and large cell/anaplastic medulloblastomas may be two tumor groups with similar genetic foundations. These data provide insights into the biology and classification of human PNETs and suggest that multiple tumor types or variants can be generated from a fixed set of genetic abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adesina AM, Nalbantoglu J, Cavenee WK . (1994). p53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma. Cancer Res 54: 5649–5651.

    CAS  PubMed  Google Scholar 

  • Anwer UE, Smith TW, DeGirolami U, Wilkinson HA . (1989). Medulloblastoma with cartilaginous differentiation. Arch Pathol Lab Med 113: 84–88.

    CAS  PubMed  Google Scholar 

  • Brown HG, Kepner JL, Perlman EJ, Friedman HS, Strother DR, Duffner PK et al. (2000). ‘Large cell/anaplastic’ medulloblastomas: a Pediatric Oncology Group Study. J Neuropathol Exp Neurol 59: 857–865.

    Article  CAS  PubMed  Google Scholar 

  • Carlotti Jr CG, Neder L, Colli BO, dos Santos MB, Garcia AS, Elias Jr J et al. (2002). Evaluation of proliferative index and cell cycle protein expression in choroid plexus tumors in children. Acta Neuropathol (Berl) 103: 1–10.

    Article  CAS  Google Scholar 

  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC . (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15: 1913–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhart CG, Chaudhry A, Daniel RW, Khaki L, Shah KV, Gravitt PE . (2005). Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus. BMC Cancer 5: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhart CG, Kepner JL, Goldthwaite PT, Kun LE, Duffner PK, Friedman HS et al. (2002). Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94: 552–560.

    Article  PubMed  Google Scholar 

  • Frank AJ, Hernan R, Hollander A, Lindsey JC, Lusher ME, Fuller CE et al. (2004). The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma. Brain Res Mol Brain Res 121: 137–140.

    Article  CAS  PubMed  Google Scholar 

  • Fults D, Pedone C, Dai C, Holland EC . (2002). MYC expression promotes the proliferation of neural progenitor cells in culture and in vivo. Neoplasia 4: 32–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessi M, Giangaspero F, Pietsch T . (2003). Atypical teratoid/rhabdoid tumors and choroid plexus tumors: when genetics ‘surprise’ pathology. Brain Pathol 13: 409–414.

    Article  PubMed  Google Scholar 

  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP . (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277: 1109–1113.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Evan GI . (2002). A matter of life and death. Cancer Cell 1: 19–30.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C . (2005). Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8: 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Hsieh LL, Chen JS, Chang CN, Lee ST, Chiu LL et al. (1996). p53 gene mutation in cerebral primitive neuroectodermal tumor in Taiwan. Cancer Lett 104: 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN . (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25: 55–57.

    Article  CAS  PubMed  Google Scholar 

  • Holland EC, Hively WP, DePinho RA, Varmus HE . (1998). A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12: 3675–3685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Janzer RC, Kleihues P . (1985). Primitive neuroectodermal tumor with choroid plexus differentiation. Clin Neuropathol 4: 93–98.

    CAS  PubMed  Google Scholar 

  • Jay V, Ho M, Chan F, Malkin D . (1996). P53 expression in choroid plexus neoplasms: an immunohistochemical study. Arch Pathol Lab Med 120: 1061–1065.

    CAS  PubMed  Google Scholar 

  • Koch A, Waha A, Tonn JC, Sorensen N, Berthold F, Wolter M et al. (2001). Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93: 445–449.

    Article  CAS  PubMed  Google Scholar 

  • Kratz JE, Stearns D, Huso DL, Slunt HH, Price DL, Borchelt DR et al. (2002). Expression of stabilized beta-catenin in differentiated neurons of transgenic mice does not result in tumor formation. BMC Cancer 2: 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus JA, Felsberg J, Tonn JC, Reifenberger G, Pietsch T . (2002). Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol 28: 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Leonard JR, Cai DX, Rivet DJ, Kaufman BA, Park TS, Levy BK . (2001). Perry Large cell/anaplastic medulloblastomas and medullomyoblastomas: clinicopathological and genetic features. J Neurosurg 95: 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97–109 (Review). Erratum in: Acta Neuropathol (2007) November; 114: 547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A . (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCall TD, Pedone CA, Fults DW . (2007). Apoptosis suppression by somatic cell transfer of Bcl-2 promotes Sonic hedgehog-dependent medulloblastoma formation in mice. Cancer Res 67: 5179–5185.

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki H, Eibl RH, Schwab M, Reichel MB, Mariani L, Gehring M et al. (1993). Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 8: 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Pauklin S, Kristjuhan A, Maimets T, Jaks V . (2005). ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochem Biophys Res Commun 334: 386–394.

    Article  CAS  PubMed  Google Scholar 

  • Pillai A, Rajeev K, Chandi S, Unnikrishnan M . (2004). Intrinsic brainstem choroid plexus papilloma. Case report. J Neurosurg 100: 1076–1078.

    Article  PubMed  Google Scholar 

  • Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW . (2003). c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5: 198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reifenberger J, Janssen G, Weber RG, Bostrom J, Engelbrecht V, Lichter P et al. (1998). Primitive neuroectodermal tumors of the cerebral hemispheres in two siblings with TP53 germline mutation. J Neuropathol Exp Neurol 57: 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Rostomily RC, Bermingham-McDonogh O, Berger MS, Tapscott SJ, Reh TA, Olson JM . (1997). Expression of neurogenic basic helix-loop-helix genes in primitive neuroectodermal tumors. Cancer Res 57: 3526–3531.

    CAS  PubMed  Google Scholar 

  • Russo C, Pellarin M, Tingby O, Bollen AW, Lamborn KR, Mohapatra G et al. (1999). Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Saylors III RL, Sidransky D, Friedman HS, Bigner SH, Bigner DD, Vogelstein B et al. (1991). Infrequent p53 gene mutations in medulloblastomas. Cancer Res 51: 4721–4723.

    PubMed  Google Scholar 

  • Sevenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D et al. (1999). Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet 8: 2359–2368.

    Article  CAS  PubMed  Google Scholar 

  • Shakhova O, Leung C, van Montfort E, Berns A, Marino S . (2006). Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 66: 5190–5200.

    Article  CAS  PubMed  Google Scholar 

  • Su X, Gopalakrishnan V, Stearns D, Aldape K, Lang FF, Fuller G et al. (2006). Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neural differentiation. Mol Cell Biol 26: 1666–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Vital A, Bringuier PP, Huang H, San Galli F, Rivel J, Ansoborlo S et al. (1998). Astrocytomas and choroid plexus tumors in two families with identical p53 germline mutations. J Neuropathol Exp Neurol 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Weiner HL, Bakst R, Hurlbert MS, Ruggiero J, Ahn E, Lee WS et al. (2002). Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res 62: 6385–6389.

    CAS  PubMed  Google Scholar 

  • Wetmore C, Eberhart DE, Curran T . (2001). Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61: 513–516.

    CAS  PubMed  Google Scholar 

  • Yuasa H, Tokito S, Tokunaga M . (1993). Primary carcinoma of the choroid plexus in Li–Fraumeni syndrome. Neurosurgery 32: 131–134.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mark Rosenblum and Jason Huse for pathology expertise, Harold Varmus for RCAS-β-catenin, Daniel W Fults for RCAS-c-Myc, Margaret Leversha and Lei Zhang for assisting in the FISH analysis, Robert J Finney and Edward Nerio for histology assistance and mouse maintenance. This work was supported by NIH Grants RO1 CA099489 and RO1 CA100688 to EC Holland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E C Holland.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momota, H., Shih, A., Edgar, M. et al. c-Myc and β-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene 27, 4392–4401 (2008). https://doi.org/10.1038/onc.2008.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.81

Keywords

This article is cited by

Search

Quick links