Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis

Abstract

The impact of oxidative stress in human cancer has been extensively studied. It is accepted that elevated reactive oxygen species (ROS) promote mutagenic DNA damage. Even with an extensive armament of cellular antioxidants and detoxification enzymes, alterations to DNA occur that initiate cellular transformation. Erythroid 2p45 (NF-E2)-related factor 2 (Nrf2) is a basic-region leucine zipper transcription factor that mediates the expression of key protective enzymes through the antioxidant-response element (ARE). By analysing 10 human prostate cancer microarray data sets, we have determined that Nrf2 and members of the glutathione-S-transferase (GST) mu family are extensively decreased in human prostate cancer. Using the TRAMP transgene and Rb and Nrf2 knockout murine models, we demonstrated that the loss of Nrf2 initiates a detrimental cascade of reduced GST expression, elevated ROS levels and ultimately DNA damage associated with tumorigenesis. Based on overwhelming data from clinical samples and the current functional analysis, we propose that the disruption of the Nrf2-antioxidant axis leads to increased oxidative stress and DNA damage in the initiation of cellular transformation in the prostate gland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA 98: 5550–5555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AM, Oberley LW, Cohen MB . (1997). Expression of antioxidant enzymes in human prostatic adenocarcinoma. Prostate 32: 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al. (2000). Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89: 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Bostwick DG, Meiers I, Shanks JH . (2007). Glutathione S-transferase: differential expression of alpha, mu, and pi isoenzymes in benign prostate, prostatic intraepithelial neoplasia, and prostatic adenocarcinoma. Hum Pathol 38: 1394–1401.

    Article  CAS  PubMed  Google Scholar 

  • Brooks JD, Paton VG, Vidanes G . (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10: 949–954.

    CAS  PubMed  Google Scholar 

  • Chan K, Lu R, Chang JC, Kan YW . (1996). NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 93: 13943–13948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR et al. (2002). Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365: 405–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day KC, McCabe MT, Zhao X, Wang Y, Davis JN, Phillips J et al. (2002). Rescue of embryonic epithelium reveals that the homozygous deletion of the retinoblastoma gene confers growth factor independence and immortality but does not influence epithelial differentiation or tissue morphogenesis. J Biol Chem 277: 44475–44484.

    Article  CAS  PubMed  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al. (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 256–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakshinamoorthy S, Long II DJ, Jaiswal AK . (2000). Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr Top Cell Regul 36: 201–216.

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826.

    Article  CAS  PubMed  Google Scholar 

  • Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL . (2004). Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 113: 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92: 3439–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyton KZ, Kensler TW . (1993). Oxidative mechanisms in carcinogenesis. Br Med Bull 49: 523–544.

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR . (2004). Glutathione transferases. Annu Rev Pharmacol Toxicol 45: 51–88.

    Article  Google Scholar 

  • Hayes JD, Pulford DJ . (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445–600.

    Article  CAS  PubMed  Google Scholar 

  • Ho SM, Leung YK, Chung I . (2006). Estrogens and antiestrogens as etiological factors and therapeutics for prostate cancer. Ann N Y Acad Sci 1089: 177–193.

    Article  CAS  PubMed  Google Scholar 

  • Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K et al. (2004). Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res 64: 6424–6431.

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13: 76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal AK . (2000). Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29: 254–262.

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Kamendulis LM . (2004). The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44: 239–267.

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW . (2003). Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278: 8135–8145.

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Wakabayashi N, Kensler TW . (2004). Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res 555: 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V et al. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62: 4499–4506.

    CAS  PubMed  Google Scholar 

  • Lee JM, Anderson PC, Padgitt JK, Hanson JM, Waters CM, Johnson JA . (2003a). Nrf2, not the estrogen receptor, mediates catechol estrogen-induced activation of the antioxidant responsive element. Biochim Biophys Acta 1629: 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA . (2003b). Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278: 12029–12038.

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML et al. (2001). Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 61: 4683–4688.

    CAS  PubMed  Google Scholar 

  • Ma Q, Battelli L, Hubbs AF . (2006). Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am J Pathol 168: 1960–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA et al. (2001). Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61: 5692–5696.

    CAS  PubMed  Google Scholar 

  • McCabe M, Azih OJ, Day ML . (2005a). pRb-independent growth arrest and transcriptional regulation of E2F target genes. Neoplasia 7: 141–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe MT, Davis JN, Day ML . (2005b). Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 65: 3624–3632.

    Article  CAS  PubMed  Google Scholar 

  • McCabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML . (2006). Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66: 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Myhre O, Andersen JM, Aarnes H, Fonnum F . (2003). Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65: 1575–1582.

    Article  CAS  PubMed  Google Scholar 

  • Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL et al. (2007). Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer 121: 1883–1891.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C . (2005). Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res 65: 6773–6779.

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P et al. (2001). Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98: 3410–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD et al. (2005). Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202: 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam NN, Nyska A, Maronpot RR, Kissling G, Lomnitski L, Suttie A et al. (2006). Differential attenuation of oxidative/nitrosative injuries in early prostatic neoplastic lesions in TRAMP mice by dietary antioxidants. Prostate 66: 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT et al. (2006). Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun 351: 883–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanaja DK, Ballman KV, Morlan BW, Cheville JC, Neumann RM, Lieber MM et al. (2006). PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res 12: 1128–1136.

    Article  CAS  PubMed  Google Scholar 

  • Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8: 393–406.

    Article  CAS  PubMed  Google Scholar 

  • Venugopal R, Jaiswal AK . (1996). Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93: 14960–14965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hayward SW, Donjacour AA, Young P, Jacks T, Sage J et al. (2000). Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res 60: 6008–6017.

    CAS  PubMed  Google Scholar 

  • Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA et al. (2001). Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61: 5974–5978.

    CAS  PubMed  Google Scholar 

  • Yates MS, Kwak MK, Egner PA, Groopman JD, Bodreddigari S, Sutter TR et al. (2006). Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res 66: 2488–2494.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Kensler T . (2005). Nrf2 as a target for cancer chemoprevention. Mutat Res 591: 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22: 2790–2799.

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Fahl WE . (2001). Functional characterization of transcription regulators that interact with the electrophile response element. Biochem Biophys Res Commun 289: 212–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jeffrey Johnson (University of Wisconsin, Madison, WI, USA) for providing us with founding Nrf2 heterozygous mice and NQO1-ARE luciferase plasimd. This study was supported by the grants from Department of Defense F013950 (DA Frohlich), National Institutes of Health 5T32 DK07758-05 and DK061488 (ML Day). National Institutes of Health 5T32 CA009674 (MT McCabe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Day.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frohlich, D., McCabe, M., Arnold, R. et al. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27, 4353–4362 (2008). https://doi.org/10.1038/onc.2008.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.79

Keywords

This article is cited by

Search

Quick links