Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Copine-I represses NF-κB transcription by endoproteolysis of p65

Abstract

Nuclear factor-κB (NF-κB) is a dynamic transcription factor that regulates important biological processes involved in cancer initiation and progression. Identifying regulators that control the half-life of NF-κB is important to understanding molecular processes that control the duration of transcriptional responses. In this study we identify copine-I, a calcium phospholipid-binding protein, as a novel repressor that physically interacts with p65 to inhibit NF-κB transcription. Knockdown of copine-I by siRNA increases tumor necrosis factor α-stimulated NF-κB transcription, while copine-I expression blocks endogenous transcription. Copine-I abolishes NF-κB transcription by inducing endoprotease processing of the N-terminus of p65, a process antagonized by IκBα. Copine-I stimulates endoproteolysis of p65 within a conserved region that is required for base-specific contact with DNA. p65 proteins lacking the N-terminus fail to bind to DNA and act as dominant-negative molecules that inhibit NF-κB transcription. Our work provides evidence that copine-I regulates the half-life of NF-κB transcriptional responses through a novel mechanism that involves endoproteolysis of the p65 protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ashburner BP, Westerheide SD, Baldwin Jr AS . (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21: 7065–7077.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AS . (1996). The NF-κB and IκBproteins: new discoveries and insights. Annu Rev Immunol 14: 649–681.

    Article  CAS  PubMed  Google Scholar 

  • Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA, Komarck CM et al. (2005). COMMD proteins, a novel family of structural and functional homologs of MURR1. J Biol Chem 280: 22222–22232.

    Article  CAS  Google Scholar 

  • Chen FE, Huang DB, Chen YQ, Ghosh G . (1998). Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391: 410–413.

    Article  CAS  Google Scholar 

  • Chen LF, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science 293: 1653–1657.

    Article  CAS  Google Scholar 

  • Chen LF, Williams SA, Mu Y, Nakano H, Duerr JM, Buckbinder L et al. (2005). NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25: 7966–7975.

    Article  CAS  PubMed  Google Scholar 

  • Chen YQ, Ghosh S, Ghosh G . (1998). A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nat Struct Biol 5: 67–73.

    Article  PubMed  Google Scholar 

  • Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J et al. (1998). The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem 273: 1393–1402.

    Article  CAS  PubMed  Google Scholar 

  • David A, Kacher Y, Specks U, Aviram I . (2003). Interaction of proteinase 3 with CD11b/CD18 (β2integrin) on the cell membrane of human neutrophils. J Leukoc Biol 74: 551–557.

    Article  CAS  PubMed  Google Scholar 

  • Dickeson SK, Santoro SA . (1998). Ligand recognition by the I domain-containing integrins. Cell Mol Life Sci 54: 556–566.

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa K, Suzuki H, McMullen B, Chung D . (2001). Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98: 1662–1666.

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S . (2004). Signaling to NF-κB. Genes Dev 18: 2195–2224.

    Article  CAS  PubMed  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW . (2006). IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26: 457–471.

    Article  CAS  PubMed  Google Scholar 

  • Hoberg JE, Yeung F, Mayo MW . (2004). SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol Cell 16: 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al. (2003). Gene expression predictors of breast cancer outcomes. Lancet 361: 1590–1596.

    Article  CAS  PubMed  Google Scholar 

  • Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H et al. (2004). NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114: 569–581.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MD, Harrison SC . (1998). Structure of an IκBá/NF-κB Complex. Cell 95: 749–758.

    Article  CAS  PubMed  Google Scholar 

  • Kang KH, Lee KH, Kim MY, Choi KH . (2001). Caspase-3-mediated cleavage of the NF-κB subunit p65 at the NH2 terminus potentiates naphthoquinone analog-induced apoptosis. J Biol Chem 276: 24638–24644.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Ben Neriah Y . (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Greten FR . (2005). NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Kim TM, Jeong HJ, Seo MY, Kim SC, Park KH, Park CH et al. (2005). Determination of genes relative to gastrointestinal tract origin cancers cells using a cDNA microarray. Clin Cancer Res 11: 79–86.

    CAS  PubMed  Google Scholar 

  • Kurosawa S, Esmon CT, Stearns-Kurosawa DJ . (2000). The soluble endothelial protein C receptor binds to activated neutrophils: involvement of proteinase-3 and CD11b/CD18. J Immunol 165: 4697–4703.

    Article  CAS  PubMed  Google Scholar 

  • Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW . (1999). Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop. Nat Cell Biol 1: 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M et al. (2004). A map of the interactome network of the metazoan C. elegans. Science 303: 540–543.

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Ghosh S . (1996). A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit. Mol Cell Biol 16: 2248–2254.

    Article  CAS  PubMed  Google Scholar 

  • Maine GN, Mao X, Komarck CM, Burstein E . (2007). COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J 26: 436–447.

    Article  CAS  Google Scholar 

  • Maitra R, Grigoryev DN, Kumar Bera T, Pastan IH, Lee B . (2003). Cloning, molecular characterization, and expression analysis of Copine 8. Biochem Biophys Res Commun 303: 842–847.

    Article  CAS  PubMed  Google Scholar 

  • Mayo MW, Madrid LV, Westerheide SD, Jones DR, Yuan X-J, Baldwin AS et al. (2002). PTEN blocks TNF-induced NF-κB-dependent transcription by inhibiting the transactivation potential of p65 subunit. J Biol Chem 277: 11116–11125.

    Article  CAS  PubMed  Google Scholar 

  • Nalefski EA, Falke JJ . (1996). The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5: 2375–2390.

    Article  CAS  PubMed  Google Scholar 

  • Phelps CB, Sengchanthalangsy LL, Malek S, Ghosh G . (2000). Mechanism of kappa B DNA binding by Rel/NF-kappa B dimers. J Biol Chem 275: 24392–24399.

    Article  CAS  PubMed  Google Scholar 

  • Preston GA, Zarella CS, Pendergraft III WF, Rudolph EH, Yang JJ, Sekura SB et al. (2002). Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-κB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways. J Am Soc Nephrol 13: 2840–2849.

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Sudhof TC . (1998). C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273: 15879–15882.

    Article  CAS  Google Scholar 

  • Ruben SM, Narayanan R, Klement JF, Chen CH, Rosen CA . (1992). Functional characterization of the NF-kappa B p65 transcriptional activator and an alternatively spliced derivative. Mol Cell Biol 12: 444–454.

    Article  CAS  PubMed  Google Scholar 

  • Saccani S, Marazzi I, Beg AA, Natoli G . (2004). Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J Exp Med 200: 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Creutz CE . (2000). Biochemical characterization of copine: a ubiquitous Ca2+-dependent, phospholipid-binding protein. Biochemistry 39: 16163–16175.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Creutz CE . (2002). Copines: a ubiquitous family of Ca2+-dependent phospholipid-binding proteins. Cell and Mol Life Sci 59: 1467–1477.

    Article  CAS  Google Scholar 

  • Tomsig JL, Snyder SL, Creutz CE . (2003). Identification of targets for calcium signaling through the copine family of proteins—characterization of a coiled-coil copine-binding motif. J Biol Chem 278: 10048–10054.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Sohma H, Creutz CE . (2004). Calcium-dependent regulation of tumour necrosis factor-α receptor signalling by copine. Biochem J 378: 1089–1094.

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO . (2002). Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13: 3369–3387.

    Article  CAS  PubMed  Google Scholar 

  • Wilson KS, Roberts H, Leek R, Harris AL, Geradts J . (2002). Differential gene expression patterns in HER2/neu- positive and -negative breast cancer cell lines and tissues. Am J Pathol 161: 1171–1185.

    Article  CAS  PubMed  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye R et al. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23: 2369–2380.

    Article  CAS  PubMed  Google Scholar 

  • Zhong HH, May MJ, Jimi E, Ghosh S . (2002). The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC1. Mol Cell 9: 625–636.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Sherman and L Gray for editorial assistance. This work was supported by the National Cancer Institute R01CA095644 and R01CA104397 awarded to MWM and the Department of Defense Idea Development Award PC050549 to MWM and CEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M W Mayo.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsey, C., Yeung, F., Stoddard, P. et al. Copine-I represses NF-κB transcription by endoproteolysis of p65. Oncogene 27, 3516–3526 (2008). https://doi.org/10.1038/sj.onc.1211030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211030

Keywords

This article is cited by

Search

Quick links