Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis

Abstract

Death ligands such as tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and certain forms of CD95L are attractive therapeutic options for metastatic melanoma. Since knowledge about the regulation of death receptor sensitivity in melanoma is sparse, we have analysed these signaling pathways in detail. The loss of CD95 or TRAIL-R1, but not of TRAIL-R2, surface expression correlated with apoptosis sensitivity in a panel of melanoma cell lines. In contrast, the expression of proteins of the apical apoptosis signaling cascade (FADD, initiator caspases-8 and cFLIP) did not predict apoptosis sensitivity. Since both TRAIL-R1 and -R2 transmit apoptotic signals, we asked whether cFLIP, highly expressed in several of the cell lines tested, is sufficient to maintain resistance to TRAIL-R2-mediated apoptosis. Downregulation of cFLIP in TRAIL-R2-positive, TRAIL-resistant IGR cells dramatically increased TRAIL sensitivity. Conversely ectopic expression of cFLIP in TRAIL-sensitive, TRAIL-R2-expressing RPM-EP melanoma cells inhibited TRAIL- and CD95L-mediated cell death. Thus, modulation of cFLIP is sufficient to sensitize TRAIL-R2-expressing cells for TRAIL. Taken together, albeit expressing all proteins necessary for death receptor-mediated apoptosis, TRAIL-R1 negative melanoma cells cannot undergo TRAIL- or CD95L-induced apoptosis due to expression of cFLIP. Hence, cFLIP represents an attractive therapeutic target for melanoma treatment, especially in combination with TRAIL receptor agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allen JD, Zhang XD, Scott CL, Boyle GM, Hersey P, Strasser A . (2005). Is Apaf-1 expression frequently abrogated in melanoma? Cell Death Differ 12: 680–681.

    Article  CAS  Google Scholar 

  • Bae SI, Cheriyath V, Jacobs BS, Reu FJ, Borden EC . (2007). Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene doi:10.1038/sj.onc.1210655.

    Article  Google Scholar 

  • Buchsbaum DJ, Forero-Torres A, Lobuglio AF . (2007). TRAIL-receptor antibodies as a potential cancer treatment. Future Oncol 3: 405–409.

    Article  CAS  Google Scholar 

  • Byers HR, Etoh T, Doherty JR, Sober AJ, Mihm MC . (1991). Cell migration and actin organization in human primary, recurrent cutaneous and metastatic melanoma cell lines. Am J Pathol 139: 423–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla-Skarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC . (2004). Downregulation of Bcl.2, FLIP or IAPs (XIAP and suvivin) by siRNA sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 11: 915–923.

    Article  Google Scholar 

  • Diessenbacher P, Hupe M, Sprick MR, Kerstan A, Geserick P, Haas T et al. (2007). NF-kB inhibition reveals differential mechanisms of TNF versus TRAIL-induced apoptosis upstream or at the level of caspase-8 activation independent of cIAP2. J Invest Dermatol doi:10.1038/sj.jid.5701141.

    Article  CAS  Google Scholar 

  • Falschlehner C, Emmerich CH, Gerlach B, Walczak H . (2007). TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39: 1462–1475.

    Article  CAS  Google Scholar 

  • Fecker LF, Geilen CC, Tchernev G, Trefzer U, Assaf C, Kurbanov BM et al. (2006). Loss of proapoptotic Bcl-2-related multidomain proteins in primary melanomas is associated with poor prognosis. J Invest Dermatol 126: 1366–1371.

    Article  CAS  Google Scholar 

  • Fulda S, Kufer MU, Meyer E, van VF, Dockhorn-Dworniczak B, Debatin KM . (2001). Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20: 5865–5877.

    Article  CAS  Google Scholar 

  • Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN . (2005). c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280: 14507–14513.

    Article  CAS  Google Scholar 

  • Golks A, Brenner D, Krammer PH, Lavrik IN . (2006). The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation. J Exp Med 203: 1295–1305.

    Article  CAS  Google Scholar 

  • Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ . (1998). Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161: 2833–2840.

    CAS  PubMed  Google Scholar 

  • Hamai A, Richon C, Meslin F, Faure F, Kauffmann A, Lecluse Y et al. (2006). Imatinib enhances human melanoma cell susceptibility to TRAIL-induced cell death: relationship to Bcl-2 family and caspase activation. Oncogene 25: 7618–7634.

    Article  CAS  Google Scholar 

  • Hymowitz SG, Ashkenazi A . (2005). Toward small-molecule agonists of TNF receptors. Nat Chem Biol 1: 353–354.

    Article  CAS  Google Scholar 

  • Ivanov VN, Hei TK . (2006). Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression. Exp Cell Res 312: 4120–4138.

    Article  CAS  Google Scholar 

  • Ivanov VN, Bhoumik A, Ronai Z . (2003). Death receptors and melanoma resistance to apoptosis. Oncogene 22: 3152–3161.

    Article  CAS  Google Scholar 

  • Karst AM, Li G . (2007). BH3-only proteins in tumorigenesis and malignant melanoma. Cell Mol Life Sci 64: 318–330.

    Article  CAS  Google Scholar 

  • Kataoka T . (2005). The caspase-8 modulator c-FLIP. Crit Rev Immunol 25: 31–58.

    Article  CAS  Google Scholar 

  • Kelley RF, Totpal K, Lindstrom SH, Mathieu M, Billeci K, Deforge L et al. (2005). Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR)5 than DR4 to apoptosis signaling. J Biol Chem 280: 2205–2212.

    Article  CAS  Google Scholar 

  • Kimberley FC, Screaton GR . (2004). Following a TRAIL: update on a ligand and its five receptors. Cell Res 14: 359–372.

    Article  CAS  Google Scholar 

  • Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S . (2001). Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276: 20633–20640.

    Article  CAS  Google Scholar 

  • Kurbanov BM, Fecker LF, Geilen CC, Sterry W, Eberle J . (2007). Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 26: 3364–3377.

    Article  CAS  Google Scholar 

  • Lavrik I, Krueger A, Schmitz I, Baumann S, Weyd H, Krammer PH et al. (2003). The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death Differ 10: 144–145.

    Article  CAS  Google Scholar 

  • Leverkus M, Neumann M, Mengling T, Rauch CT, Brocker EB, Krammer PH et al. (2000). Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 60: 553–559.

    CAS  PubMed  Google Scholar 

  • Leverkus M, Sprick MR, Wachter T, Denk A, Brocker EB, Walczak H et al. (2003a). TRAIL-induced apoptosis and gene induction in HaCaT keratinocytes: differential contribution of TRAIL receptors 1 and 2. J Invest Dermatol 121: 149–155.

    Article  CAS  Google Scholar 

  • Leverkus M, Sprick MR, Wachter T, Mengling T, Baumann B, Serfling E et al. (2003b). Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol Cell Biol 23: 777–790.

    Article  CAS  Google Scholar 

  • Macfarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJ, Cohen GM . (2005). TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 65: 11265–11270.

    Article  CAS  Google Scholar 

  • Meng XW, Lee SH, Kaufmann SH . (2006). Apoptosis in the treatment of cancer: a promise kept? Curr Opin Cell Biol 18: 668–676.

    Article  CAS  Google Scholar 

  • Miller AJ, Mihm Jr MC . (2006). Melanoma. N Engl J Med 355: 51–65.

    Article  CAS  Google Scholar 

  • Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G et al. (2000). The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 275: 32208–32213.

    Article  CAS  Google Scholar 

  • Naito M, Katayama R, Ishioka T, Suga A, Takubo K, Nanjo M et al. (2004). Cellular FLIP inhibits beta-catenin ubiquitylation and enhances Wnt signaling. Mol Cell Biol 24: 8418–8427.

    Article  CAS  Google Scholar 

  • Natoni A, Macfarlane M, Inoue S, Walewska R, Majid A, Knee D et al. (2007). TRAIL signals to apoptosis in chronic lymphocytic leukaemia cells primarily through TRAIL-R1 whereas cross-linked agonistic TRAIL-R2 antibodies facilitate signalling via TRAIL-R2. Br J Haematol 139: 568–577.

    Article  CAS  Google Scholar 

  • Neise D, Graupner V, Gillissen BF, Daniel PT, Schulze-Osthoff K, Janicke RU et al. (2007). Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene doi:10.1038/sj.onc.1210773.

    Article  Google Scholar 

  • Nguyen T, Zhang XD, Hersey P . (2001). Relative resistance of fresh isolates of melanoma to tumor necrosis factor related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Clin Cancer Res 5: 966–973.

    Google Scholar 

  • Peltenburg LT, de Bruin EC, Meersma D, Smit NP, Schrier PI, Medema JP . (2005). Expression and function of the apoptosis effector Apaf-1 in melanoma. Cell Death Differ 12: 678–679.

    Article  CAS  Google Scholar 

  • Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK et al. (2007). The CD95 receptor: apoptosis revisited. Cell 129: 447–450.

    Article  CAS  Google Scholar 

  • Rudner J, Jendrossek V, Lauber K, Daniel PT, Wesselborg S, Belka C . (2005). Type I and type II reactions in TRAIL-induced apoptosis—results from dose-response studies. Oncogene 24: 130–140.

    Article  CAS  Google Scholar 

  • Scaffidi C, Smitz I, Krammer PH, Peter ME . (1999). The role of c-Flip in modulation of CD95-induced apoptosis. J Biol Chem 274: 1541–1548.

    Article  CAS  Google Scholar 

  • Sprick MR, Walczak H . (2004). The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta 1644: 125–132.

    Article  CAS  Google Scholar 

  • Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ . (2007). Targeting death-inducing receptors in cancer therapy. Oncogene 26: 3745–3757.

    Article  CAS  Google Scholar 

  • Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D et al. (2006). TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25: 7434–7439.

    Article  CAS  Google Scholar 

  • van der Sloot AM, Tur V, Szegezdi E, Mullally MM, Cool RH, Samali A et al. (2006). Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc Natl Acad Sci USA 103: 8634–8639.

    Article  CAS  Google Scholar 

  • Wachter T, Sprick M, Hausmann D, Kerstan A, McPherson K, Stassi G et al. (2004). cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes. J Biol Chem 279: 52824–52834.

    Article  CAS  Google Scholar 

  • Wendt J, von HC, Hemmati P, Belka C, Dorken B, Daniel PT . (2005). TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 24: 4052–4064.

    Article  CAS  Google Scholar 

  • Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P . (1999). Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59: 2747–2753.

    CAS  Google Scholar 

  • Zhuang L, Lee SC, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF et al. (2006). Progression in melanoma is associated with decreased expression of death receptors for tumor necrosis factor-related apoptosis-inducing ligand. Hum Pathol 37: 1286–1294.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R Byers, A Schwaaf and EB Bröcker for providing melanoma cell lines and H Wajant for helpful suggestions and critical reading of the manuscript. We are grateful to PH Krammer for mAbs to caspase-8 (C-15), cFLIP (NF-6) and Apo-1 (IgG1), DW Nicholson for CPP32 (Caspase-3), and X Wang for Bid antiserum. MR Sprick is supported by an EMBO Long Term fellowship (ALTF 1063-2005). We thank M Möckel for excellent technical assistance. Part of this study was funded by grants of the Wilhelm-Sander-Stiftung (2000.092.2), Deutsche Krebshilfe (106849), Exzellenzförderung Sachsen-Anhalt (N2_OGU, TP6) and DFG (Le 953/5-1) to M Leverkus. C Drewniok was supported by a NBL-3 Start-Up project (BMBF 01ZZ0407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Leverkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geserick, P., Drewniok, C., Hupe, M. et al. Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis. Oncogene 27, 3211–3220 (2008). https://doi.org/10.1038/sj.onc.1210985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210985

Keywords

This article is cited by

Search

Quick links