Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of HRK gene in human cancer

Abstract

Apoptosis regulators play one of the most critical roles in tumorigenesis, and an imbalance between cell proliferation and apoptosis may contribute to tumor progression. HRK was itself originally identified as a proapoptotic gene induced by diminished levels of cytokine in hematopoietic cells and cultured neurons and repressed by the expression of death-repressor proteins. A few analyses of HRK protein expression in primary central nervous system lymphomas have been performed, and little is known about the epigenetic or post-transcriptional mechanisms that may participate in HRK inactivation. Here we show the data on the 5′-CpG methylation status, loss of heterozygosity on 12q13.1 and its association with HRK expression in human malignancies, including prostate cancers, astrocytic tumors and primary central nervous system lymphomas. Aberrant methylation of CpG islands within the promoter is an epigenetic event largely responsible for the silencing of the HRK gene and subsequent low apoptotic counts in our series of malignancies. Inactivation of HRK apparently occurs in a substantial proportion of all tumor phenotypes and, as a potential proapoptotic gene, HRK may contribute to the development and progression of many human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG . (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10: 687–692.

    Article  CAS  PubMed  Google Scholar 

  • Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B et al. (1995). A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14: 5589–5596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debatin KM, Stahnke K, Fulda S . (2003). Apoptosis in hematological disorders. Semin Cancer Biol 13: 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Downward J . (1999). How BAD phosphorylation is good for survival. Nat Cell Biol 1: E33–E35.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M . (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JG . (2001). A gene hypermethylation profile of human cancer. Cancer Res 61: 3225–3229.

    CAS  PubMed  Google Scholar 

  • Evan GI, Vousden KH . (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411: 342–348.

    Article  CAS  PubMed  Google Scholar 

  • Giovanni A, Keramaris E, Morris EJ, Hou ST, O’Hare M, Dyson N et al. (2000). E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275: 11553–11560.

    Article  CAS  PubMed  Google Scholar 

  • Harris CA, Johnson Jr EM . (2001). BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276: 37754–37760.

    CAS  PubMed  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi T, Nakamura M, Shimada K, Ishida E, Hirao K, Konishi N . (2008). HRK inactivation associated with promoter methylation and LOH in prostate cancer. Prostate 68: 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T et al. (1999). The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J Biol Chem 274: 7975–7981.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M . (1997). Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J Biol Chem 272: 18842–18848.

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Ding L, Chen S, Nunez G . (1997). Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J 16: 1686–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Woo DK, Bae SI, Kim YI, Kim WH . (2001). Allelotype of the adenoma-carcinoma sequence of the stomach. Cancer Detect Prev 25: 237–244.

    CAS  PubMed  Google Scholar 

  • Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC et al. (2002). The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61: 215–225; discussion 226–229.

    Article  PubMed  Google Scholar 

  • Konishi N, Nakamura M, Ishida E, Shimada K, Mitsui E, Yoshikawa R et al. (2005a). High expression of a new marker PCA-1 in human prostate carcinoma. Clin Cancer Res 11: 5090–5097.

    Article  CAS  PubMed  Google Scholar 

  • Konishi N, Shimada K, Ishida E, Nakamura M . (2005b). Molecular pathology of prostate cancer. Pathol Int 55: 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Konishi N, Shimada K, Nakamura M, Ishida E, Ota I, Tanaka N et al. (2008). Function of JunB in transient amplifying cell senescence and progression of human prostate cancer. Clin Cancer Res 14: 4408–4416.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Konishi N, Tsunoda S, Hiasa Y, Tsuzuki T, Inui T et al. (1997). Retinoblastoma protein expression and MIB-1 correlate with survival of patients with malignant astrocytoma. Cancer 80: 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y et al. (2001a). p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11: 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Watanabe T, Yonekawa Y, Kleihues P, Ohgaki H . (2001b). Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C→A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22: 1715–1719.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T et al. (2005a). Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N . (2005b). Frequent HRK inactivation associated with low apoptotic index in secondary glioblastomas. Acta Neuropathol (Berl) 110: 402–410.

    Article  CAS  Google Scholar 

  • Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N . (2006). Defective expression of HRK is associated with promoter methylation in primary central nervous system lymphomas. Oncology 70: 212–221.

    Article  CAS  PubMed  Google Scholar 

  • Nelson WG, De Marzo AM, Isaacs WB . (2003). Prostate cancer. N Engl J Med 349: 366–381.

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Toyota M, Satoh A, Sasaki Y, Ogi K, Akino K et al. (2003). Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. Clin Cancer Res 9: 6410–6418.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Strasser A . (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9: 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Reed JC . (1995). Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 9: 451–473.

    Article  CAS  PubMed  Google Scholar 

  • Sanz C, Benito A, Inohara N, Ekhterae D, Nunez G, Fernandez-Luna JL . (2000). Specific and rapid induction of the proapoptotic protein Hrk after growth factor withdrawal in hematopoietic progenitor cells. Blood 95: 2742–2747.

    CAS  PubMed  Google Scholar 

  • Sanz C, Horita M, Fernandez-Luna JL . (2002). Fas signaling and blockade of Bcr-Abl kinase induce apoptotic Hrk protein via DREAM inhibition in human leukemia cells. Haematologica 87: 903–907.

    CAS  PubMed  Google Scholar 

  • Sasaki Y, Morimoto I, Ishida S, Yamashita T, Imai K, Tokino T . (2001). Adenovirus-mediated transfer of the p53 family genes, p73 and p51/p63 induces cell cycle arrest and apoptosis in colorectal cancer cell lines: potential application to gene therapy of colorectal cancer. Gene Therapy 8: 1401–1408.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Konishi N . (2005). Phosphorylation status of Fas-associated death domain-containing protein (FADD) is associated with prostate cancer progression. J Pathol 206: 423–432.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Nakamura M, Ishida E, Higuchi T, Yamamoto H, Tsujikawa K et al. (2008). Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Sci 99: 39–45.

    CAS  PubMed  Google Scholar 

  • Shimada K, Nakamura M, Ishida E, Konishi N . (2006). Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer. Histol Histopathol 21: 415–422.

    CAS  PubMed  Google Scholar 

  • Steinbach JP, Supra P, Huang HJ, Cavenee WK, Weller M . (2002). CD95-mediated apoptosis of human glioma cells: modulation by epidermal growth factor receptor activity. Brain Pathol 12: 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Sunayama J, Ando Y, Itoh N, Tomiyama A, Sakurada K, Sugiyama A et al. (2004). Physical and functional interaction between BH3-only protein Hrk and mitochondrial pore-forming protein p32. Cell Death Differ 11: 771–781.

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP . (1999). CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96: 8681–8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakkala M, Lahteenmaki K, Raunio H, Paakko P, Soini Y . (1999). Apoptosis during breast carcinoma progression. Clin Cancer Res 5: 319–324.

    CAS  PubMed  Google Scholar 

  • Wistuba II, Tang M, Maitra A, Alvarez H, Troncoso P, Pimentel F et al. (2001). Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res 61: 3795–3800.

    CAS  PubMed  Google Scholar 

  • Zhang GJ, Kimijima I, Abe R, Watanabe T, Kanno M, Hara K et al. (1998). Apoptotic index correlates to bcl-2 and p53 protein expression, histological grade and prognosis in invasive breast cancers. Anticancer Res 18: 1989–1998.

    CAS  PubMed  Google Scholar 

  • Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B . (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Konishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Shimada, K. & Konishi, N. The role of HRK gene in human cancer. Oncogene 27 (Suppl 1), S105–S113 (2008). https://doi.org/10.1038/onc.2009.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.48

Keywords

This article is cited by

Search

Quick links