Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interference of the dominant negative helix–loop–helix protein ID1 with the proteasomal subunit S5A causes centrosomal abnormalities

Abstract

The inhibitor of DNA-binding (ID) proteins are dominant-negative inhibitors of basic helix–loop–helix transcription factors that have multiple functions during development and cellular differentiation. High-level expression of some ID family members has been observed in human malignancies, and in some cases was correlated with poor clinical prognosis. Ectopic ID1 expression extends the life span of primary human epithelial cells, inhibits cellular differentiation and induces centrosome duplication errors, thus suggesting that ID1 may have oncogenic activities. ID1 can bind to the proteasomal subunit S5A/Rpn10, but the biological consequences of the interaction have not been studied in detail. Here, we show that ID1's ability to induce supernumerary centrosomes correlates with S5A binding. Similar to ID1, a fraction of the S5A protein localizes to centrosomal structures. Furthermore, partial depletion of S5A by RNA interference causes accumulation of cells with supernumerary centrosomes. These results are consistent with the model that ID1 dysregulates centrosome homeostasis at least in part by interfering with S5A activities at the centrosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alani RM, Hasskarl J, Grace M, Hernandez MC, Israel MA, Munger K . (1999). Immortalization of primary human keratinocytes by the helix–loop–helix protein, Id-1. Proc Natl Acad Sci USA 96: 9637–9641.

    Article  CAS  Google Scholar 

  • Anand G, Yin X, Shahidi AK, Grove L, Prochownik EV . (1997). Novel regulation of the helix–loop–helix protein Id1 by S5a, a subunit of the 26 S proteasome. J Biol Chem 272: 19140–19151.

    Article  CAS  Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M . (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426: 570–574.

    Article  CAS  Google Scholar 

  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H . (1990). The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 61: 49–59.

    Article  CAS  Google Scholar 

  • Berse M, Bounpheng M, Huang X, Christy B, Pollmann C, Dubiel W . (2004). Ubiquitin-dependent degradation of Id1 and Id3 is mediated by the COP9 signalosome. J Mol Biol 343: 361–370.

    Article  CAS  Google Scholar 

  • Bloom J, Peschiaroli A, Demartino G, Pagano M . (2006). Modification of Cul1 regulates its association with proteasomal subunits. Cell Div 1: 5.

    Article  Google Scholar 

  • Bounpheng MA, Dimas JJ, Dodds SG, Christy BA . (1999). Degradation of Id proteins by the ubiquitin–proteasome pathway. FASEB J 13: 2257–2264.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  Google Scholar 

  • D’Assoro AB, Stivala F, Barrett S, Ferrigno G, Salisbury JL . (2001). GFP-centrin as a marker for centriole dynamics in the human breast cancer cell line MCF-7. Ital J Anat Embryol 106: 103–110.

    Google Scholar 

  • Deed RW, Hara E, Atherton GT, Peters G, Norton JD . (1997). Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol Cell Biol 17: 6815–6821.

    Article  CAS  Google Scholar 

  • Doxsey SJ . (2001). Centrosomes as command centres for cellular control. Nat Cell Biol 3: E105–E108.

    Article  CAS  Google Scholar 

  • Duensing S, Duensing A, Crum CP, Munger K . (2001). Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61: 2356–2360.

    CAS  Google Scholar 

  • Duensing S, Duensing A, Lee DC, Edwards KM, Piboonniyom SO, Manuel E et al (2004). Cyclin-dependent kinase inhibitor indirubin-3′-oxime selectively inhibits human papillomavirus type 16 E7-induced numerical centrosome anomalies. Oncogene 23: 8206–8215.

    Article  CAS  Google Scholar 

  • Duensing S, Lee BH, Cin PD, Munger K . (2003). Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt's lymphoma. Mol Cancer 2: 30.

    Article  Google Scholar 

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al (2000). The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97: 10002–10007.

    Article  CAS  Google Scholar 

  • Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN . (2000). Activity and regulation of the centrosome-associated proteasome. J Biol Chem 275: 409–413.

    Article  CAS  Google Scholar 

  • Fajerman I, Schwartz AL, Ciechanover A . (2004). Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination. Biochem Biophys Res Commun 314: 505–512.

    Article  CAS  Google Scholar 

  • Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL, Israel MA . (1998). Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix–loop–helix factors. Mol Cell Biol 18: 5435–5444.

    Article  CAS  Google Scholar 

  • Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT et al (2004). Rescue of cardiac defects in ID knockout embryos by injection of embryonic stem cells. Science 306: 247–252.

    Article  CAS  Google Scholar 

  • Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T et al (1999). Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13: 2242–2257.

    Article  CAS  Google Scholar 

  • Goldberg AL . (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899.

    Article  CAS  Google Scholar 

  • Hara E, Hall M, Peters G . (1997). Cdk2-dependent phosphorylation of ID2 modulates activity of E2A-related transcription factors. EMBO J 16: 332–342.

    Article  CAS  Google Scholar 

  • Hara E, Uzman JA, Dimri GP, Nehlin JO, Testori A, Campisi J . (1996). The helix–loop–helix protein Id-1 and a retinoblastoma protein binding mutant of SV40T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Dev Genet 18: 161–172.

    Article  CAS  Google Scholar 

  • Hasskarl J, Duensing S, Manuel E, Munger K . (2004). The helix–loop–helix protein ID1 localizes to centrosomes and rapidly induces abnormal centrosome numbers. Oncogene 63: 476–483.

    Google Scholar 

  • Hinchcliffe EH, Sluder G . (2001). ‘It takes two to tango’: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15: 1167–1181.

    Article  CAS  Google Scholar 

  • Hofmann K, Falquet L . (2001). A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26: 347–350.

    Article  CAS  Google Scholar 

  • Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA . (1994). The helix–loop–helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 8: 1270–1284.

    Article  CAS  Google Scholar 

  • Jen Y, Weintraub H, Benezra R . (1992). Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 6: 1466–1479.

    Article  CAS  Google Scholar 

  • Kreider BL, Benezra R, Rovera G, Kadesch T . (1992). Inhibition of myeloid differentiation by the helix–loop–helix protein Id. Science 255: 1700–1702.

    Article  CAS  Google Scholar 

  • Lasorella A, Stegmuller J, Guardavaccaro D, Liu G, Carro MS, Rothschild G et al (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature 442: 471–474.

    Article  CAS  Google Scholar 

  • Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC . (2003). Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene 22: 4498–4508.

    Article  CAS  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201.

    Article  CAS  Google Scholar 

  • Meraldi P, Nigg EA . (2002). The centrosome cycle. FEBS Lett 521: 9–13.

    Article  CAS  Google Scholar 

  • Nickoloff BJ, Chaturvedi V, Bacon P, Qin JZ, Denning MF, Diaz MO . (2000). Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem 275: 27501–27504.

    CAS  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y et al (2001). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409: 1067–1070.

    Article  CAS  Google Scholar 

  • Perk J, Iavarone A, Benezra R . (2005). Id family of helix–loop–helix proteins in cancer. Nat Rev Cancer 5: 603–614.

    Article  CAS  Google Scholar 

  • Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD . (2001). Id helix–loop–helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol Cell Biol 21: 524–533.

    Article  CAS  Google Scholar 

  • Stavropoulou V, Xie J, Henriksson M, Tomkinson B, Imreh S, Masucci MG . (2005). Mitotic infidelity and centrosome duplication errors in cells overexpressing tripeptidyl-peptidase II. Cancer Res 65: 1361–1368.

    Article  CAS  Google Scholar 

  • Storchova Z, Pellman D . (2004). From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5: 45–54.

    Article  CAS  Google Scholar 

  • Szlanka T, Haracska L, Kiss I, Deak P, Kurucz E, Ando I et al (2003). Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes in Drosophila melanogaster. J Cell Sci 116: 1023–1033.

    Article  CAS  Google Scholar 

  • Tang J, Gordon GM, Nickoloff BJ, Foreman KE . (2002). The helix–loop–helix protein id-1 delays onset of replicative senescence in human endothelial cells. Lab Invest 82: 1073–1079.

    Article  CAS  Google Scholar 

  • Trausch-Azar JS, Lingbeck J, Ciechanover A, Schwartz AL . (2004). Ubiquitin–proteasome-mediated degradation of Id1 is modulated by MyoD. J Biol Chem 279: 32614–32619.

    Article  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN et al (1999). Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145: 481–490.

    Article  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A . (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Bornens for the centrin-GFP construct, R Agami for pSUPER.retro, PM Howley for S5A cDNA, and S Duensing for helpful discussion. We thank N Bourgeois for technical assistance. JH is especially grateful for the extraordinary support of K Hasskarl. This work was supported by Public Health Service Grant R01 CA066980 (KM), by postdoctoral fellowship HA3185/1-1 and research Grant HA3185/2-1 and 2-3 from the Deutsche Forschungsgemeinschaft (JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hasskarl.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasskarl, J., Mern, D. & Münger, K. Interference of the dominant negative helix–loop–helix protein ID1 with the proteasomal subunit S5A causes centrosomal abnormalities. Oncogene 27, 1657–1664 (2008). https://doi.org/10.1038/sj.onc.1210808

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210808

Keywords

This article is cited by

Search

Quick links