Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA

Abstract

Regulation of the synthesis, function and degradation of HDM2 (Mdm2 in mouse) plays a key role in controlling the abundance and activity of the transcription factor p53, with consequent implications for the proliferation and survival of normal and cancer cells. We have previously identified the regulation of export of HDM2 mRNA from the nucleus as a novel point of control of HDM2 synthesis. This process is dependent on the activity of the growth factor-regulated MAP-kinase kinases (MEKs). Here, we provide evidence that the eIF4E kinase MNK1 is a key downstream effector of MEKs in this regulatory pathway. We show that HDM2 mRNA export in breast cancer cells is promoted by overexpressed eIF4E in a MEK- and MNK1-dependent manner, and inhibition of MNK1 suppresses endogenous HDM2 mRNA export pathways. This MNK1- and eIF4E-dependent HDM2 regulation occurs through sequences in the 3′ untranslated region of HDM2 mRNA, and consequently HDM2 mRNA transcripts from both the constitutive P1 and inducible P2 promoters are regulated by this pathway. eIF4E is a known oncogene that is overexpressed in human tumours, including the majority of breast cancers. This pathway, therefore, may play an important role in the dysregulation of HDM2 oncoprotein expression that occurs in many human tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Blaydes JP, Gire V, Rowson J, Wynford-Thomas D . (1997). Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2. Oncogene 14: 1859–1868.

    Article  CAS  PubMed  Google Scholar 

  • Blaydes JP, Wynford-Thomas D . (1998). The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene 16: 3317–3322.

    Article  CAS  PubMed  Google Scholar 

  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 591–602.

    Article  CAS  PubMed  Google Scholar 

  • Bond GL, Levine AJ . (2007). A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26: 1317–1323.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxade M, Parra JL, Rousseau S, Shpiro N, Marquez R, Morrice N et al. (2005). The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23: 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Marechal V, Levine AJ . (1993). Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13: 4107–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culjkovic B, Topisirovic I, Borden KL . (2007). Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor eIF4E. Cell Cycle 6: 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL . (2005). eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J Cell Biol 169: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL . (2006). eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175: 415–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen BR . (2003). Nuclear RNA export. J Cell Sci 116: 587–597.

    Article  PubMed  Google Scholar 

  • Erkmann JA, Kutay U . (2004). Nuclear export of mRNA: from the site of transcription to the cytoplasm. Exp Cell Res 296: 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Gallouzi IE, Steitz JA . (2001). Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 294: 1895–1901.

    Article  CAS  PubMed  Google Scholar 

  • Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P et al. (1993). In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8: 2457–2467.

    CAS  PubMed  Google Scholar 

  • Keene JD . (2003). Organizing mRNA export. Nat Genet 33: 111–112.

    Article  CAS  PubMed  Google Scholar 

  • Knauf U, Tschopp C, Gram H . (2001). Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 21: 5500–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK et al. (2007). Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2: e242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N . (2004). eIF4E—from translation to transformation. Oncogene 23: 3172–3179.

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B . (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature (London) 358: 80–83.

    Article  CAS  Google Scholar 

  • Onel K, Cordon-Cardo C . (2004). MDM2 and prognosis. Mol Cancer Res 2: 1–8.

    CAS  PubMed  Google Scholar 

  • Phelps M, Darley M, Primrose JN, Blaydes JP . (2003). p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha positive breast cancer cells. Cancer Res 63: 2616–2623.

    CAS  PubMed  Google Scholar 

  • Phelps M, Phillips A, Darley M, Blaydes JP . (2005). MEK-ERK signaling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J Biol Chem 280: 16651–16658.

    Article  CAS  PubMed  Google Scholar 

  • Phillips A, Darley M, Blaydes JP . (2006a). GC-selective DNA-binding antibiotic, Mithramycin A, reveals multiple points of control in the regulation of Hdm2 protein synthesis. Oncogene 25: 4183–4193.

    Article  CAS  PubMed  Google Scholar 

  • Phillips A, Jones CJ, Blaydes JP . (2006b). The mechanisms of regulation of Hdm2 protein level by serum growth factors. FEBS Lett 580: 300–304.

    Article  CAS  PubMed  Google Scholar 

  • Ries S, Biederer C, Woods D, Shifman O, Shirasawa S, Sasazuki T et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N . (1996). Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93: 1065–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaulian E, Resnitzky D, Shifman O, Blandino G, Amsterdam A, Yayon A et al. (1997). Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 15: 2717–2725.

    Article  CAS  PubMed  Google Scholar 

  • Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ et al. (2003). Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 23: 8992–9002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Ruiz-Gutierrez M, Borden KL . (2004). Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64: 8639–8642.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • von der Haar T, Gross JD, Wagner G, McCarthy JE . (2004). The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11: 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Wahl GM, Carr AM . (2001). The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3: E277–E286.

    Article  CAS  PubMed  Google Scholar 

  • Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL . (2006). Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23: 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . (1997). Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16: 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zauberman A, Flusberg D, Barak Y, Oren M . (1995). A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res 23: 2584–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (no. 04-422) from the Association for International Cancer Research. We are grateful to Professor Katherine Borden for the sharing of data prior to its publication, N Sonenberg for making available the eIF4E expression vector and Dr Monika Phelps for cloning of the HDM2 3′UTR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Blaydes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, A., Blaydes, J. MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 27, 1645–1649 (2008). https://doi.org/10.1038/sj.onc.1210785

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210785

Keywords

This article is cited by

Search

Quick links