Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TACC3 depletion sensitizes to paclitaxel-induced cell death and overrides p21WAF-mediated cell cycle arrest

Abstract

Regulators of the mitotic spindle apparatus are attractive cellular targets for antitumor therapy. The centrosomal protein transforming acidic coiled coil (TACC) 3 is required for spindle assembly and proper chromosome segregation. In this study, we employed an inducible RNA interference approach to downregulate TACC3 expression. We show that TACC3 knock-down in NIH3T3 fibroblasts caused aneuploidy, but failed to overtly impair mitotic progression. TACC3 depletion rather triggered a postmitotic p53–p21WAF pathway and led to a reversible cell cycle arrest. Similar effects were induced by low concentrations of paclitaxel, a spindle poison used in antitumor therapy. Interestingly, however, and unlike in TACC3-proficient cells, paclitaxel was able to induce strong polyploidy and subsequent apoptosis in TACC3-depleted cells. Even though paclitaxel treatment was associated with the activation of the survival kinase Akt and an antiapoptotic expression of cytoplasmic p21WAF and cyclin D1, this inhibition of cell death was abrogated by depletion of TACC3. Thus, our data identify TACC3 as a potential target to overcome p21WAF-associated protection of transformed cells against paclitaxel-induced cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abal M, Andreu JM, Barasoain I . (2003). Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets 3: 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Andreassen PR, Lohez OD, Margolis RL . (2003). G2 and spindle assembly checkpoint adaptation, and tetraploidy arrest: implications for intrinsic and chemically induced genomic instability. Mutat Res 532: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2002). Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 1: 391–393.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2006). Prolonged mitosis versus tetraploid checkpoint: how p53 measures the duration of mitosis. Cell Cycle 5: 971–975.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Darzynkiewicz Z, Halicka HD, Pozarowski P, Demidenko ZN, Barry JJ et al. (2004). Paclitaxel induces primary and postmitotic G1 arrest in human arterial smooth muscle cells. Cell Cycle 3: 1050–1056.

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Demidenko ZN, Giovino M, Szynal C, Donskoy E, Herrmann RA et al. (2006). Cytostatic activity of paclitaxel in coronary artery smooth muscle cells is mediated through transient mitotic arrest followed by permanent post-mitotic arrest: comparison with cancer cells. Cell Cycle 5: 1574–1579.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Robey R, Bates S, Fojo T . (2000). Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest 105: 533–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito DA, Rieder CL . (2006). Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16: 1194–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassimeris L, Morabito J . (2004). TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol Biol Cell 15: 1580–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JG, Horwitz SB . (2002). Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res 62: 1935–1938.

    CAS  PubMed  Google Scholar 

  • Chen X, Bargonetti J, Prives C . (1995). p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res 55: 4257–4263.

    CAS  PubMed  Google Scholar 

  • Child ES, Mann DJ . (2006). The intricacies of p21 phosphorylation. Cell Cycle 5: 1313–1319.

    Article  CAS  PubMed  Google Scholar 

  • Coqueret O . (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Cully M, Shiu J, Piekorz RP, Muller WJ, Done SJ, Mak TW . (2005). Transforming acidic coiled coil 1 promotes transformation and mammary tumorigenesis. Cancer Res 65: 10363–10370.

    Article  CAS  PubMed  Google Scholar 

  • Del Sal G, Murphy M, Ruaro E, Lazarevic D, Levine AJ, Schneider C . (1996). Cyclin D1 and p21/waf1 are both involved in p53 growth suppression. Oncogene 12: 177–185.

    CAS  PubMed  Google Scholar 

  • Gergely F . (2002). Centrosomal TACCtics. BioEssays 24: 915–925.

    Article  CAS  PubMed  Google Scholar 

  • Gergely F, Draviam VM, Raff JW . (2003). The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17: 336–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannakakou P, Robey R, Fojo T, Blagosklonny MV . (2001). Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 20: 3806–3813.

    Article  CAS  PubMed  Google Scholar 

  • Gladden AB, Diehl JA . (2005). Location, location, location: the role of cyclin D1 nuclear localization in cancer. J Cell Biochem 96: 906–913.

    Article  CAS  PubMed  Google Scholar 

  • Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD . (2000). CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103: 435–447.

    Article  CAS  PubMed  Google Scholar 

  • Han EK, Ng SC, Arber N, Begemann M, Weinstein IB . (1999). Roles of cyclin D1 and related genes in growth inhibition, senescence and apoptosis. Apoptosis 4: 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Heliez C, Baricault L, Barboule N, Valette A . (2003). Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene 22: 3260–3268.

    Article  CAS  PubMed  Google Scholar 

  • Ikui AE, Yang CP, Matsumoto T, Horwitz SB . (2005). Low concentrations of taxol cause mitotic delay followed by premature dissociation of p55CDC from Mad2 and BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell Cycle 4: 1385–1388.

    Article  CAS  PubMed  Google Scholar 

  • Janicke RU, Sohn D, Essmann F, Schulze-Osthoff K . (2007). The multiple battles fought by anti-apoptotic p21. Cell Cycle 6: 407–413.

    Article  PubMed  Google Scholar 

  • Jordan MA, Wilson L . (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Judson PL, Watson JM, Gehrig PA, Fowler Jr WC, Haskill JS . (1999). Cisplatin inhibits paclitaxel-induced apoptosis in cisplatin-resistant ovarian cancer cell lines: possible explanation for failure of combination therapy. Cancer Res 59: 2425–2432.

    CAS  PubMed  Google Scholar 

  • Jung CK, Jung JH, Park GS, Lee A, Kang CS, Lee KY . (2006). Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer. Pathol Int 56: 503–509.

    Article  CAS  PubMed  Google Scholar 

  • Kadura S, Sazer S . (2005). SAC-ing mitotic errors: how the spindle assembly checkpoint (SAC) plays defense against chromosome mis-segregation. Cell Motil Cytoskeleton 61: 145–1460.

    Article  CAS  PubMed  Google Scholar 

  • Lauffart B, Vaughan MM, Eddy R, Chervinsky D, DiCioccio RA, Black JD et al. (2005). Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Women's Health 5: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M et al. (2003). Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 14: 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S . (2007). Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9: 160–170.

    Article  CAS  PubMed  Google Scholar 

  • Nurse P . (1990). Universal control mechanism regulating onset of M-phase. Nature 344: 503–508.

    Article  CAS  PubMed  Google Scholar 

  • Olashaw N, Bagui TK, Pledger WJ . (2004). Cell cycle control: a complex issue. Cell Cycle 3: 263–264.

    Article  CAS  PubMed  Google Scholar 

  • Piekorz RP, Hoffmeyer A, Duntsch CD, McKay C, Nakajima H, Sexl V et al. (2002). The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis. EMBO J 21: 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Lu Y, Liu B, Fang M, Mendelsohn J, Fan Z . (2000). Differential modulation of paclitaxel-mediated apoptosis by p21Waf1 and p27Kip1. Oncogene 19: 2423–2429.

    Article  CAS  PubMed  Google Scholar 

  • Sohn D, Essmann F, Schulze-Osthoff K, Janicke RU . (2006). p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res 66: 11254–11262.

    Article  CAS  PubMed  Google Scholar 

  • Srsen V, Gnadt N, Dammermann A, Merdes A . (2006). Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J Cell Biol 174: 625–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart ZA, Mays D, Pietenpol JA . (1999). Defective G1-S cell cycle checkpoint function sensitizes cells to microtubule inhibitor-induced apoptosis. Cancer Res 59: 3831–3837.

    CAS  PubMed  Google Scholar 

  • Still IH, Hamilton M, Vince P, Wolfman A, Cowell JK . (1999a). Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene 18: 4032–4038.

    Article  CAS  PubMed  Google Scholar 

  • Still IH, Vince P, Cowell JK . (1999b). The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 58: 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Kienitz A, Hofmann I, Muller R, Bastians H . (2004). Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23: 6845–6853.

    Article  CAS  PubMed  Google Scholar 

  • West KA, Castillo SS, Dennis PA . (2002). Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5: 234–248.

    Article  CAS  PubMed  Google Scholar 

  • Wiznerowicz M, Trono D . (2003). Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao R, Natsume Y, Noda T . (2007). TACC3 is required for the proper mitosis of sclerotome mesenchymal cells during formation of the axial skeleton. Cancer Sci 98: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L . (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331: 851–858.

    Article  CAS  PubMed  Google Scholar 

  • Zachos G, Black EJ, Walker M, Scott M, Vagnarelli P, Earnshaw WC et al. (2007). Chk1 is required for spindle checkpoint function. Dev Cell 12: 247–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Didier Trono (Swiss Federal Institute of Technology, Laussane) and Lars-Oliver Klotz (Institut für Umweltmedizinische Forschung, Düsseldorf) for kindly providing constructs for lentivector-mediated RNA interference and antibodies, respectively. We are indebted to Antje Gohla, Reiner U Jänicke, Mohamad Ahmadian, Chris Wichmann and members of the department for critical comments on the manuscript. This work was supported by intramural grant 9772210 from the Medical Faculty of the Heinrich-Heine-University Düsseldorf (to RPP) and by the Deutsche Forschungsgemeinschaft (to HH, KSO, BN and RPP), by the Deutsche Jose Carreras Stiftung (to HH) and by Fonds der Chemischen Industrie (to KSO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Piekorz.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, L., Essmann, F., Kletke, A. et al. TACC3 depletion sensitizes to paclitaxel-induced cell death and overrides p21WAF-mediated cell cycle arrest. Oncogene 27, 116–125 (2008). https://doi.org/10.1038/sj.onc.1210628

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210628

Keywords

This article is cited by

Search

Quick links