Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Indirubin-3′-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK

Abstract

Indirubin-3′-monoxime is a derivative of the bis-indole alkaloid indirubin, an active ingredient of a traditional Chinese medical preparation that exhibits anti-inflammatory and anti-leukemic activities. Indirubin-3′-monoxime is mainly recognized as an inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3. It inhibits proliferation of cultured cells, mainly through arresting the cells in the G1/S or G2/M phase of the cell cycle. Here, we report that indirubin-3′-monoxime is able to inhibit proliferation of NIH/3T3 cells by specifically inhibiting autophosphorylation of fibroblast growth factor receptor 1 (FGFR1), blocking in this way the receptor-mediated cell signaling. Indirubin-3′-monoxime inhibits the activity of FGFR1 at a concentration lower than that required for inhibition of phosphorylation of CDK2 and retinoblastoma protein and cell proliferation stimulated by fetal calf serum. The ability of indirubin-3′-monoxime to inhibit FGFR1 signaling was similar to that of the FGFR1 inhibitor SU5402. In addition, we found that indirubin-3′-monoxime activates long-term p38 mitogen-activated protein kinase activity, which stimulates extracellular signal-regulated kinase 1/2 in a way unrelated to the activity of FGFR1. Furthermore, we show that indirubin-3′-monoxime can inhibit proliferation of the myeloid leukemia cell line KG-1a through inhibition of the activity of the FGFR1 tyrosine kinase. The data presented here demonstrate previously unknown activities of indirubin-3′-monoxime that may have clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukemia

CDK:

cyclin-dependent kinase

FCS:

fetal calf serum

FGFR:

FGF receptor

HSPG:

heparan sulfate proteoglycan

JNK:

c-Jun N -terminal kinase

Rb:

retinoblastoma protein

TCA:

trichloroacetic acid

References

  • Adachi J, Mori Y, Matsui S, Takigami H, Fujino J, Kitagawa H et al. (2001). Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276: 31475–31478.

    Article  CAS  PubMed  Google Scholar 

  • Benhar M, Dalyot I, Engelberg D, Levitzki A . (2001). Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21: 6913–6926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le BX . (2000). FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 11: 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y et al. (2003). Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17: 1969–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E et al. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18: 6845–6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaffanet M, Popovici C, Leroux D, Jacrot M, Adelaide J, Dastugue N et al. (1998). t(6;8), t(8;9) and t(8;13) translocations associated with stem cell myeloproliferative disorders have close or identical breakpoints in chromosome region 8p11–12. Oncogene 16: 945–949.

    Article  CAS  PubMed  Google Scholar 

  • Chiariello M, Gomez E, Gutkind JS . (2000). Regulation of cyclin-dependent kinase (Cdk) 2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase. Biochem J 349 (Part 3): 869–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dailey L, Ambrosetti D, Mansukhani A, Basilico C . (2005). Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16: 233–247.

    Article  CAS  PubMed  Google Scholar 

  • Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA et al. (2001). Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure 9: 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J . (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Fraker PJ, Speck Jr JC . (1978). Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun 80: 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Furdui CM, Lew ED, Schlessinger J, Anderson KS . (2006). Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 21: 711–717.

    Article  CAS  PubMed  Google Scholar 

  • Gu TL, Goss VL, Reeves C, Popova L, Nardone J, Macneill J et al. (2006). Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia. Blood 108: 4202–4204.

    Article  CAS  PubMed  Google Scholar 

  • Guasch G, Ollendorff V, Borg JP, Birnbaum D, Pebusque MJ . (2001). 8p12 stem cell myeloproliferative disorder: the FOP-fibroblast growth factor receptor 1 fusion protein of the t(6;8) translocation induces cell survival mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt/mTOR pathways. Mol Cell Biol 21: 8129–8142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia A, Davis C, Bamba D, Le N, Gwarzo MY, Sadowska M et al. (2005). Indirubin-3′-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 19: 2087–2095.

    Article  CAS  PubMed  Google Scholar 

  • Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P et al. (1999). Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1: 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Oka S, Tanahashi T, Okita Y . (1994). Cell cycle-dependent nuclear localization of exogenously added fibroblast growth factor-1 in BALB/c 3T3 and human vascular endothelial cells. Exp Cell Res 215: 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM . (2004). Evolution of the Fgf and Fgfr gene families. Trends Genet 20: 563–569.

    Article  CAS  PubMed  Google Scholar 

  • Jautelat R, Brumby T, Schafer M, Briem H, Eisenbrand G, Schwahn S et al. (2005). From the insoluble dye indirubin towards highly active, soluble CDK2-inhibitors. Chembiochem 6: 531–540.

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Seit-Nebi A, Davis RJ, Han J . (2006). Multiple activation mechanisms of p38alpha mitogen-activated protein kinase. J Biol Chem 281: 26225–26234.

    Article  CAS  PubMed  Google Scholar 

  • Keenan SM, Bellone C, Baldassare JJ . (2001). Cyclin-dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase. J Biol Chem 276: 22404–22409.

    Article  CAS  PubMed  Google Scholar 

  • Kosmopoulou MN, Leonidas DD, Chrysina ED, Bischler N, Eisenbrand G, Sakarellos CE et al. (2004). Binding of the potential antitumour agent indirubin-5-sulphonate at the inhibitor site of rabbit muscle glycogen phosphorylase b. Comparison with ligand binding to pCDK2-cyclin A complex. Eur J Biochem 271: 2280–2290.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL et al. (2001). Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 276: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Lents NH, Keenan SM, Bellone C, Baldassare JJ . (2002). Stimulation of the Raf/MEK/ERK cascade is necessary and sufficient for activation and Thr-160 phosphorylation of a nuclear-targeted CDK2. J Biol Chem 277: 47469–47475.

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Buff EM, Perrimon N, Michelson AM . (1999). Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126: 3715–3723.

    CAS  PubMed  Google Scholar 

  • Losa JH, Parada CC, Viniegra JG, Sanchez-Arevalo LV, Cajal S, Sanchez-Prieto R . (2003). Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22: 3998–4006.

    Article  Google Scholar 

  • Lundberg AS, Weinberg RA . (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18: 753–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald D, Aguiar RC, Mason PJ, Goldman JM, Cross NC . (1995). A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 9: 1628–1630.

    CAS  PubMed  Google Scholar 

  • Marko D, Schatzle S, Friedel A, Genzlinger A, Zankl H, Meijer L et al. (2001). Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br J Cancer 84: 283–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK et al. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276: 955–960.

    Article  CAS  PubMed  Google Scholar 

  • Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S et al. (2005). Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA 102: 5998–6003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DT, Hernandez-Montes E, Vauzour D, Schonthal AH, Rice-Evans C, Cadenas E et al. (2006). The intracellular genistein metabolite 5,7,3′,4′-tetrahydroxyisoflavone mediates G2-M cell cycle arrest in cancer cells via modulation of the p38 signaling pathway. Free Radic Biol Med 41: 1225–1239.

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM . (2000). FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22: 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A et al. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47: 935–946.

    Article  CAS  PubMed  Google Scholar 

  • Popovici C, Zhang B, Gregoire MJ, Jonveaux P, Lafage-Pochitaloff M, Birnbaum D et al. (1999). The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood 93: 1381–1389.

    CAS  PubMed  Google Scholar 

  • Powers CJ, McLeskey SW, Wellstein A . (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7: 165–197.

    Article  CAS  PubMed  Google Scholar 

  • Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofe-Ochoa X, Totzke F et al. (2006). 7-Bromoindirubin-3′-oxime induces caspase-independent cell death. Oncogene 25: 6304–6318.

    Article  CAS  PubMed  Google Scholar 

  • Roux PP, Blenis J . (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68: 320–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS . (2000). A role for the p38 mitogen-activated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 60: 2464–2472.

    CAS  PubMed  Google Scholar 

  • Sandvig K, Olsnes S . (1982). Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytotic vesicles. J Biol Chem 257: 7504–7513.

    CAS  PubMed  Google Scholar 

  • Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB . (2006). Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappaB signaling pathway. J Biol Chem 281: 23425–23435.

    Article  CAS  PubMed  Google Scholar 

  • Tibbles LA, Woodgett JR . (1999). The stress-activated protein kinase pathways. Cell Mol Life Sci 55: 1230–1254.

    Article  CAS  PubMed  Google Scholar 

  • Wiedlocha A, Falnes PO, Madshus IH, Sandvig K, Olsnes S . (1994). Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell 76: 1039–1051.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Liu Y, Ma C, Yuan Z, Wang W, Zhu Z et al. (2004). Indirubin-3′-oxime inhibits c-Jun NH2-terminal kinase: anti-apoptotic effect in cerebellar granule neurons. Neurosci Lett 367: 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Yu ZP, Matsuoka M, Wispriyono B, Iryo Y, Igisu H . (2000). Activation of mitogen-activated protein kinases by tributyltin in CCRF-CEM cells: role of intracellular Ca(2+). Toxicol Appl Pharmacol 168: 200–207.

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Hu X, Friesel R, Maciag T . (1993). Long term growth factor exposure and differential tyrosine phosphorylation are required for DNA synthesis in BALB/c 3T3 cells. J Biol Chem 268: 9611–9620.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

YZ is a PhD student at the University of Oslo, Faculty of Medicine, supported by the Norwegian Cancer Society. The skilful assistance with the cell cultures of Anne Engen and Anne Berit Dyve is gratefully acknowledged. This work was supported by grant DNK, T-974651001 from the Norwegian Cancer Society. We are grateful to Professors Jahn Nesland and Sjur Olsnes for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Więdłocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhen, Y., Sørensen, V., Jin, Y. et al. Indirubin-3′-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK. Oncogene 26, 6372–6385 (2007). https://doi.org/10.1038/sj.onc.1210473

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210473

Keywords

This article is cited by

Search

Quick links