Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Smad3 is acetylated by p300/CBP to regulate its transactivation activity

Abstract

Smad proteins are crucial for the intracellular signaling of transforming growth factor-β (TGF-β). Upon their receptor-induced activation, Smad proteins are phosphorylated and translocated to the nucleus to activate the transcription of a select set of target genes. Here, we show that the co-activator p300/CBP bound and acetylated Smad3 as well as Smad2 in vivo, and that the acetylation was stimulated by TGF-β. A major acetylation site of Smad3 by p300/CBP is Lys-378 in the MH2 domain (Smad3C) known to be critical for the regulation of transcriptional activity. Replacement of Lys-378 with Arg decreased the transcriptional activity of GAL4-Smad3C in a luciferase assay. Moreover, p300/CBP potentiated the transcriptional activity of GAL4-Smad3C, but not the acetylation-resistant GAL4-Smad3C(K378R) mutant. These results suggest that acetylation of Smad3 by p300/CBP regulates positively its transcriptional activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BMP:

bone morphogenetic protein

DMEM:

Dulbecco's modified Eagle's medium

EDTA:

ethylenediamine tetraacetic acid

FBS:

fetal bovine serum

MH:

Mad homology

PAGE:

polyacrylamide gel electrophoresis

PCR:

polymerase chain reaction

SDS:

sodium dodecyl sulfate

TGF-β:

transforming growth factor-β

References

  • Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL . (1997). TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272: 27678–27685.

    Article  CAS  Google Scholar 

  • Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K et al. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 274: 35269–35277.

    Article  CAS  Google Scholar 

  • Attisano L, Wrana JL . (2000). Smads as transcriptional co-modulators. Curr Opin Cell Biol 12: 235–243.

    Article  CAS  Google Scholar 

  • Boyes J, Byfield P, Nakatani Y, Ogryzko V . (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598.

    Article  CAS  Google Scholar 

  • Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP et al. (2002). Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem 45: 999–1001.

    Article  CAS  Google Scholar 

  • Carcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L et al. (1994). Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 14: 3810–3821.

    Article  CAS  Google Scholar 

  • Enari M, Ohmori K, Kitabayashi I, Taya Y . (2006). Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev 20: 1087–1099.

    Article  CAS  Google Scholar 

  • Feng XH, Zhang Y, Wu RY, Derynck R . (1998). The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12: 2153–2163.

    Article  CAS  Google Scholar 

  • Freiman RN, Tjian R . (2003). Regulating the regulators: lysine modifications make their mark. Cell 112: 11–17.

    Article  CAS  Google Scholar 

  • Gronroos E, Hellman U, Heldin CH, Ericsson J . (2002). Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10: 483–493.

    Article  CAS  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  Google Scholar 

  • Hasan S, Hottiger MO . (2002). Histone acetyl transferases: a role in DNA repair and DNA replication. J Mol Med 80: 463–474.

    Article  CAS  Google Scholar 

  • Hattori T, Ohoka N, Inoue Y, Hayashi H, Onozaki K . (2003). C/EBP family transcription factors are degraded by the proteasome but stabilized by forming dimer. Oncogene 22: 1273–1280.

    Article  CAS  Google Scholar 

  • Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW et al. (1997). The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89: 1165–1173.

    Article  CAS  Google Scholar 

  • Heldin CH, Miyazono K, ten Dijke P . (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471.

    Article  CAS  Google Scholar 

  • Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massagué J . (2001). The TGF beta receptor activation process: an inhibitor-to substrate-binding switch. Mol Cell 8: 671–682.

    Article  CAS  Google Scholar 

  • Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M et al. (1997). Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389: 622–626.

    Article  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al. (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Pharmacol 62: 65–74.

    Article  CAS  Google Scholar 

  • Inoue Y, Kitagawa M, Onozaki, Hayashi H . (2004). Contribution of the constitutive and inducible degradation of Smad3 by the ubiquitin–proteasome pathway to transforming growth factor-beta signaling. J Interferon Cytokine Res 24: 43–54.

    Article  CAS  Google Scholar 

  • Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P . (2000). The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acid Res 28: 4291–4298.

    Article  CAS  Google Scholar 

  • Janknecht R, Wells NJ, Hunter T . (1998). TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 12: 2114–2119.

    Article  CAS  Google Scholar 

  • Kawabata H, Kawahara K, Kanekura T, Araya N, Daitoku H, Hatta M et al. (2002). Possible role of transcriptional coactivator P/CAF and nuclear acetylation in calcium-induced keratinocyte differentiation. J Biol Chem 277: 8099–8105.

    Article  CAS  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . (2000). Regulation of E2F1 activity by acetylation. EMBO J 19: 662–671.

    Article  CAS  Google Scholar 

  • Massagué J, Blain SW, Lo RS . (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309.

    Article  Google Scholar 

  • Massagué J, Wotton D . (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19: 1745–1754.

    Article  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A . (2005). Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 102: 11278–11283.

    Article  CAS  Google Scholar 

  • Miyazono K . (2000). Positive and negative regulation of TGF-beta signaling. J Cell Sci 113: 1101–1109.

    CAS  PubMed  Google Scholar 

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R et al. (1997). Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389: 631–635.

    Article  CAS  Google Scholar 

  • Nishihara A, Hanai JI, Okamoto N, Yanagisawa J, Kato S, Miyazono M et al. (1998). Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 3: 613–623.

    Article  CAS  Google Scholar 

  • Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y et al. (1999). Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell 4: 725–734.

    Article  CAS  Google Scholar 

  • Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH . (1997). Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272: 28107–28115.

    Article  CAS  Google Scholar 

  • Takahashi N, Tetsuka T, Uranishi H, Okamoto T . (2002). Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 269: 4559–4565.

    Article  CAS  Google Scholar 

  • Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C et al. (2001). Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell 8: 1277–1289.

    Article  CAS  Google Scholar 

  • Wu RY, Zhang Y, Feng XH, Derynck R . (1997). Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol Cell Biol 17: 2521–2528.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr JL Wrana (Samuel Lunenfeld Research Institute) and Dr K Miyazono (University of Tokyo) for providing plasmids. We also thank Dr C Uchida (Hamamatsu University) for kind suggestions. This work was supported in part by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research on Priority Areas (C) from the Ministry of Education, Science Sports and Culture, Welfide Medical Research Foundation, Grants-in-Aid for Scientific Research from Nagoya City University and the Kudo Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, Y., Itoh, Y., Abe, K. et al. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26, 500–508 (2007). https://doi.org/10.1038/sj.onc.1209826

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209826

Keywords

This article is cited by

Search

Quick links