Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor

Abstract

Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymes are overexpressed during inflammation and multistage tumor progression in many neoplastic disorders including lung, breast and pancreatic cancers. Here we report that the tumor suppressor phosphatase and tensin homolog (PTEN) is oxidized and inactivated during arachidonic acid (AA) metabolism in pancreatic cancer cell lines expressing COX-2 or 5-LOX. Oxidation of PTEN decreases its phosphatase activity, favoring increased phosphatidylinositol 3,4,5-triphosphate production, activation of Akt and phosphorylation of downstream Akt targets including GSK-3β and S6K. These effects are recapitulated with pancreatic phospholipase A2, which hydrolyses the release of membrane-bound AA. Interference with PTEN's physiological antagonism of signals from growth factors, insulin and oncogenes may confer risk for hypertrophic or neoplastic diseases associated with chronic inflammation or unwarranted oxidative metabolism of essential fatty acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G . (2006). Inflammation and cancer: how hot is the link? Biochem Pharmacol 72: 1605–1621.

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA . (2004). The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 23: 8571–8580.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, De Lucchini S, Marin O, Turner DL, Hanks SK, Villa-Moruzzi E . (2005). Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. Biochem J 391: 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugarolas J, Kaelin Jr WG . (2004). Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6: 7–10.

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC, Neel BG . (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96: 4240–4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan TO, Rittenhouse SE, Tsichlis PN . (1999). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68: 965–1014.

    Article  CAS  PubMed  Google Scholar 

  • Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY et al. (2004). Redox regulation of PTEN and protein tyrosine phosphatases in H2O2 mediated cell signaling. FEBS Lett 560: 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Chu EC, Tarnawski AS . (2004). PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10: RA235–RA241.

    CAS  PubMed  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  • Ding XZ, Tong WG, Adrian TE . (2001). Cyclooxygenases and lipoxygenases as potential targets for treatment of pancreatic cancer. Pancreatology 1: 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M . (2004). PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193–204.

    Article  PubMed  Google Scholar 

  • Gericke A, Munson M, Ross AH . (2006). Regulation of the PTEN phosphatase. Gene 374: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Giardina C, Inan MS . (1998). Nonsteroidal anti-inflammatory drugs, short-chain fatty acids, and reactive oxygen metabolism in human colorectal cancer cells. Biochim Biophys Acta 1401: 277–288.

    Article  CAS  PubMed  Google Scholar 

  • Gorin Y, Kim NH, Feliers D, Bhandari B, Choudhury GG, Abboud HE . (2001). Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redox-dependent pathway and independent of phosphoinositide 3-kinase. FASEB J 15: 1909–1920.

    Article  CAS  PubMed  Google Scholar 

  • Hii CS, Moghadammi N, Dunbar A, Ferrante A . (2001). Activation of the phosphatidylinositol 3-kinase-Akt/protein kinase B signaling pathway in arachidonic acid-stimulated human myeloid and endothelial cells: involvement of the ErbB receptor family. J Biol Chem 276: 27246–27255.

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Fulford M, Li CF, Boonyaratanakornkit J, Sayyah S . (2006). Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer. Cancer Res 66: 1427–1433.

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS et al. (2001). Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  • Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N et al. (2001). Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 98: 11563–11568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER et al. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA 101: 16419–16424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG . (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277: 20336–20342.

    Article  CAS  PubMed  Google Scholar 

  • Leslie NR, Downes CP . (2002). PTEN: The down side of PI 3-kinase signallin. Cell Signal 14: 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP . (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22: 5501–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Malik KU . (2005). Angiotensin II-induced Akt activation is mediated by metabolites of arachidonic acid generated by CaMKII-stimulated Ca2(+)-dependent phospholipase A2. Am J Physiol Heart Circ Physiol 288: H2306–H2316.

    Article  CAS  PubMed  Google Scholar 

  • Marks F, Muller-Decker K, Furstenberger G . (2000). A causal relationship between unscheduled eicosanoid signaling and tumor development: cancer chemoprevention by inhibitors of arachidonic acid metabolism. Toxicology 153: 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Mimeault M, Brand RE, Sasson AA, Batra SK . (2005). Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas 31: 301–316.

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen TJ, Eskola JU, Aho AJ, Havia VT, Lovgren TN, Nanto V . (1985). Immunoreactive phospholipase A2 in serum in acute pancreatitis and pancreatic cancer. Clin Chem 31: 1116–1120.

    CAS  PubMed  Google Scholar 

  • Seo JH, Ahn Y, Lee SR, Yeol Yeo C, Chung Hur K . (2005). The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell 16: 348–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanger BZ, Stiles B, Lauwers GY, Bardeesy N, Mendoza M, Wang Y et al. (2005). Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8: 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Tonks NK . (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell 121: 667–670.

    Article  CAS  PubMed  Google Scholar 

  • Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A et al. (2003). Pten dose dictates cancer progression in the prostate. PLoS Biol 1: E59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinokurova LV, Astaf'eva OV, Banifatov PV . (2001). The role of phospholipase A2 in pathogenesis of acute and chronic pancreatitis, its significance in diagnosis of the disease. Ross Gastroenterol Zh 2: 72–77.

    Google Scholar 

  • Wagner TM, Mullally JE, Fitzpatrick FA . (2006). Reactive lipid species from cyclooxygenase-2 inactivate tumor suppressor LKB1/STK11: cyclopentenone prostaglandins and 4-hydroxy-2-nonenal covalently modify and inhibit the AMP-kinase kinase that modulates cellular energy homeostasis and protein translation. J Biol Chem 281: 2598–2604.

    Article  CAS  PubMed  Google Scholar 

  • Watkins SJ, Norbury CJ . (2002). Translation initiation and its deregulation during tumorigenesis. Br J Cancer 86: 1023–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildroudt ML, Freeman EJ . (2006). Regulation of Akt by arachidonic acid and phosphoinositide 3-kinase in angiotensin II-stimulated vascular smooth muscle cells. Biochim Biophys Acta 1761: 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Xiong HQ . (2004). Molecular targeting therapy for pancreatic cancer. Cancer Chemother Pharmacol 54 (Suppl 1): S69–S77.

    PubMed  Google Scholar 

  • Yamashita S, Ogawa M, Sakamoto K, Abe T, Arakawa H, Yamashita J . (1994). Elevation of serum group II phospholipase A2 levels in patients with advanced cancer. Clin Chim Acta 228: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Yu CX, Li S, Whorton AR . (2005). Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 68: 847–854.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Matt Firpo and Jill Coursen provided cell lines. This work was supported by USPHS Grant PO1 CA73992 Project 5 and the Huntsman Cancer Institute Directors Translational Research Initiative. TMC is supported by a MCRTP fellowship T32 CA093247. FAF holds the Dee Glen and Ida Smith Chair for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F A Fitzpatrick.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covey, T., Edes, K. & Fitzpatrick, F. Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene 26, 5784–5792 (2007). https://doi.org/10.1038/sj.onc.1210391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210391

Keywords

This article is cited by

Search

Quick links