Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rational combinations of siRNAs targeting Plk1 with breast cancer drugs

Abstract

Commonly used drugs for the treatment of breast cancer patients like paclitaxel and Herceptin often show severe side effects or induce resistance in clinical settings. Thus, we analysed a combination of Plk1 (polo-like kinase 1)-specific small interfering RNAs (siRNAs), a powerful tool to induce ‘mitotic catastrophe’ in cancer cells, together with these drugs to identify conditions for enhanced drug sensitivity. After transfection, the antineoplastic agents were added and cell proliferation, apoptosis and cell cycle distribution in breast cancer cells (MCF-7, SK-BR-3, MDA-MB-435 and BT-474) and in primary human mammary epithelial cells were determined. Downregulation of cellular Plk1 levels led to an elevated percentage of cells in G2/M phase. The percentage of apoptotic nuclei in MCF-7, MDA-MB-435, SK-BR-3 and BT-474 cells was clearly increased after incubation with Plk1-specific siRNAs and paclitaxel. Interestingly, the caspase pathway was activated after treatment with Plk1-specific siRNAs and paclitaxel or Herceptin. Treatment of breast cancer cells with siRNAs targeting Plk1 improved the sensitivity toward paclitaxel and Herceptin in a synergistic manner. In all experiments, very low concentrations across a wide range of clinically relevant concentrations were sufficient to induce an antiproliferative effect. The combination of Plk1-specific siRNAs with modern breast cancer drugs seems to represent rational combinations to be tested in preclinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahmad N . (2004). Polo-like kinase (Plk) 1: a novel target for the treatment of prostate cancer. FASEB J 18: 5–7.

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S et al. (2004). Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279: 25549–25561.

    Article  CAS  PubMed  Google Scholar 

  • Barr FA, Sillje HH, Nigg EA . (2004). Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Blain SW, Scher HI, Cordon-Cardo C, Koff A . (2003). p27 as a target for cancer therapeutics. Cancer Cell 3: 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Blajeski AL, Kottke TJ, Kaufmann SH . (2001). A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res 270: 277–288.

    Article  CAS  PubMed  Google Scholar 

  • Check E . (2005). A crucial test. Nat Med 11: 243–244.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yeung TK, Wang Z . (2000). Enhanced drug resistance in cells coexpressing ErbB2 with EGF receptor or ErbB3. Biochem Biophys Res Commun 277: 757–763.

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Talalay P . (1984). Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV . (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6: 443–446.

    Article  CAS  PubMed  Google Scholar 

  • Cogswell JP, Brown CE, Bisi JE, Neill SD . (2000). Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ 11: 615–623.

    CAS  PubMed  Google Scholar 

  • Crown J, Pegram M . (2003). Platinum–taxane combinations in metastatic breast cancer: an evolving role in the era of molecularly targeted therapy. Breast Cancer Res Treat 79 (Suppl 1): S11–S18.

    Article  CAS  PubMed  Google Scholar 

  • Dai D, Holmes AM, Nguyen T, Davies S, Theele DP, Verschraegen C et al. (2005). A potential synergistic anticancer effect of paclitaxel and amifostine on endometrial cancer. Cancer Res 65: 9517–9524.

    Article  CAS  PubMed  Google Scholar 

  • Dubska L, Andera L, Sheard MA . (2005). HER2 signaling downregulation by trastuzumab and suppression of the PI3K/Akt pathway: an unexpected effect on TRAIL-induced apoptosis. FEBS Lett 579: 4149–4158.

    Article  CAS  PubMed  Google Scholar 

  • Eckerdt F, Yuan J, Strebhardt K . (2005). Polo-like kinases and oncogenesis. Oncogene 24: 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L et al. (2002). Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 20: 1800–1808.

    Article  CAS  PubMed  Google Scholar 

  • Gleave ME, Monia BP . (2005). Antisense therapy for cancer. Nat Rev Cancer 5: 468–479.

    Article  CAS  PubMed  Google Scholar 

  • Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N et al. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7: 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Wilson L . (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Kauselmann G, Weiler M, Wulff P, Jessberger S, Konietzko U, Scafidi J et al. (1999). The polo-like protein kinases Fnk and Snk associate with a Ca(2+)- and integrin-binding protein and are regulated dynamically with synaptic plasticity. EMBO J 18: 5528–5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE . (2000). ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol 20: 3210–3223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane HA, Nigg EA . (1996). Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135: 1701–1713.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Erikson RL . (2003). Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA 100: 5789–5794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Lei M, Erikson RL . (2006). Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26: 2093–2108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marches R, Uhr JW . (2004). Enhancement of the p27Kip1-mediated antiproliferative effect of trastuzumab (Herceptin) on HER2-overexpressing tumor cells. Int J Cancer 112: 492–501.

    Article  CAS  PubMed  Google Scholar 

  • Mimura K, Kono K, Hanawa M, Kanzaki M, Nakao A, Ooi A et al. (2005). Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clin Cancer Res 11: 4898–4904.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Esteva FJ . (2006a). HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8: 215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahta R, Esteva FJ . (2006b). Herceptin: mechanisms of action and resistance. Cancer Lett 232: 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ . (2004). P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64: 3981–3986.

    Article  CAS  PubMed  Google Scholar 

  • Nishii K, Kabarowski JH, Gibbons DL, Griffiths SD, Titley I, Wiedemann LM et al. (1996). ts BCR-ABL kinase activation confers increased resistance to genotoxic damage via cell cycle block. Oncogene 13: 2225–2234.

    CAS  PubMed  Google Scholar 

  • Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K et al. (2005). Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 115: 978–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff PB, Horwitz SB . (1980). Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77: 1561–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Smith MR, Wilson ML, Hamanaka R, Chase D, Kung H, Longo DL et al. (1997). Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234: 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH . (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2: 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173–178.

    Article  CAS  PubMed  Google Scholar 

  • Spankuch B, Heim S, Kurunci-Csacsko E, Lindenau C, Yuan J, Kaufmann M et al. (2006). Down-regulation of polo-like kinase 1 elevates drug sensitivity of breast cancer cells in vitro and in vivo. Cancer Res 66: 5836–5846.

    Article  PubMed  Google Scholar 

  • Spankuch B, Matthess Y, Knecht R, Zimmer B, Kaufmann M, Strebhardt K . (2004). Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96: 862–872.

    Article  PubMed  Google Scholar 

  • Spankuch B, Strebhardt K . (2005). RNA interference-based gene silencing in mice: the development of a novel therapeutical strategy. Curr Pharm Des 11: 3405–3419.

    Article  PubMed  Google Scholar 

  • Spankuch-Schmitt B, Bereiter-Hahn J, Kaufmann M, Strebhardt K . (2002a). Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J Natl Cancer Inst 94: 1863–1877.

    Article  CAS  PubMed  Google Scholar 

  • Spankuch-Schmitt B, Wolf G, Solbach C, Loibl S, Knecht R, Stegmuller M et al. (2002b). Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene 21: 3162–3171.

    Article  CAS  PubMed  Google Scholar 

  • Strebhardt K . (2001). PLK (polo-like kinase). In: Creighton TE (ed). Encyclopedia of Molecular Medicine. Wiley and Sons Inc.: New York, NY, pp 2530–2532.

    Google Scholar 

  • Strebhardt K, Ullrich A . (2006). Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Templeton NS . (2002). Cationic liposome-mediated gene delivery in vivo. Biosci Rep 22: 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Therasse P . (2002). Measuring the clinical response. What does it mean? Eur J Cancer 38: 1817–1823.

    Article  CAS  PubMed  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Bisi J, Strum J, Liu L, Carrick K, Graham KM et al. (2006). Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res 66: 1640–1647.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Horlin A, Hock B, Stutte HJ, Rubsamen-Waigmann H, Strebhardt K . (1997). Polo-like kinase, a novel marker for cellular proliferation. Am J Pathol 150: 1165–1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Kramer A, Matthess Y, Yan R, Spankuch B, Gatje R et al. (2006). Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene 25: 1753–1762.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN et al. (2006). RNAi-mediated gene silencing in non-human primates. Nature 441: 111–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R Knecht and H Baumann for microscopical support. This work is supported by the Nationales Genomforschungsnetz (01GR0431), the Deutsche Krebshilfe (10–1212-St 1), the Wilhelm-Sander-Stiftung (2001.007.2), the Messer-Stiftung, the Schleussner-Stiftung and the Deutsche Forschungsgemeinschaft (SP 1092/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Spänkuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spänkuch, B., Kurunci-Csacsko, E., Kaufmann, M. et al. Rational combinations of siRNAs targeting Plk1 with breast cancer drugs. Oncogene 26, 5793–5807 (2007). https://doi.org/10.1038/sj.onc.1210355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210355

Keywords

This article is cited by

Search

Quick links