Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Males absent on the first (MOF): from flies to humans

Abstract

Histone modifications such as acetylation, methylation and phosphorylation have been implicated in fundamental cellular processes such as epigenetic regulation of gene expression, organization of chromatin structure, chromosome segregation, DNA replication and DNA repair. Males absent on the first (MOF) is responsible for acetylating histone H4 at lysine 16 (H4K16) and is a key component of the MSL complex required for dosage compensation in Drosophila. The human ortholog of MOF (hMOF) has the same substrate specificity and recent purification of the human and Drosophila MOF complexes showed that these complexes were also highly conserved through evolution. Several studies have shown that loss of hMOF in mammalian cells leads to a number of different phenotypes; a G2/M cell cycle arrest, nuclear morphological defects, spontaneous chromosomal aberrations, reduced transcription of certain genes and an impaired DNA repair response upon ionizing irradiation. Moreover, hMOF is involved in ATM activation in response to DNA damage and acetylation of p53 by hMOF influences the cell's decision to undergo apoptosis instead of a cell cycle arrest. These data, highlighting hMOF as an important component of many cellular processes, as well as links between hMOF and cancer will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Akhtar A, Becker PB . (2000). Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367–375.

    CAS  PubMed  Google Scholar 

  • Allfrey VG, Pogo BG, Littau VC, Gershey EL, Mirsky AE . (1968). Histone acetylation in insect chromosomes. Science 159: 314–316.

    CAS  PubMed  Google Scholar 

  • Anderson JD, Lowary PT, Widom J . (2001). Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 307: 977–985.

    CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    CAS  PubMed  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415.

    CAS  PubMed  Google Scholar 

  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI . (1994). Acetylated histone H4 on the male X-chromosome is associated with dosage compensation in Drosophila. Genes Dev 8: 96–104.

    CAS  PubMed  Google Scholar 

  • Borrow J, Stanton Jr VP, Andresen JM, Becher R, Behm FG, Chaganti RS et al. (1996). The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14: 33–41.

    CAS  PubMed  Google Scholar 

  • Bristow CA, Shore P . (2003). Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. Nucleic Acids Res 31: 2735–2744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164–171.

    CAS  PubMed  Google Scholar 

  • Burke TW, Cook JG, Asano M, Nevins JR . (2001). Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276: 15397–15408.

    CAS  PubMed  Google Scholar 

  • Carapeti M, Aguiar RC, Goldman JM, Cross NC . (1998). A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91: 3127–3133.

    CAS  PubMed  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J . (2003). The diverse functions of histone acetyltransferase complexes. Trends Genet 19: 321–329.

    CAS  PubMed  Google Scholar 

  • Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ . (2000). MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Gene Chromosome Cancer 28: 138–144.

    CAS  Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y et al (1999). Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274: 28528–28536.

    CAS  PubMed  Google Scholar 

  • Champagne N, Pelletier N, Yang XJ . (2001). The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 20: 404–409.

    CAS  PubMed  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    CAS  PubMed  Google Scholar 

  • Clark J, Edwards S, John M, Flohr P, Gordon T, Maillard K et al. (2002). Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clones. Gene Chromosome Cancer 34: 104–114.

    CAS  Google Scholar 

  • Contzler R, Regamey A, Favre B, Roger T, Hohl D, Huber M . (2006). Histone acetyltransferase HBO1 inhibits NF-kappaB activity by coactivator sequestration. Biochem Biophys Res Commun 350: 208–213.

    CAS  PubMed  Google Scholar 

  • Corona DF, Clapier CR, Becker PB, Tamkun JW . (2002). Modulation of ISWI function by site-specific histone acetylation. EMBO Rep 3: 242–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR et al. (2003). MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3: 259–271.

    CAS  PubMed  Google Scholar 

  • Deissler H, Kafka A, Schuster E, Sauer G, Kreienberg R, Zeillinger R . (2004). Spectrum of p53 mutations in biopsies from breast cancer patients selected for preoperative chemotherapy analysed by the functional yeast assay to predict therapeutic response. Oncol Rep 11: 1281–1286.

    CAS  PubMed  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM . (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496.

    CAS  PubMed  Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ . (2005). Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 102: 5501–5506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J et al (2005). Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121: 873–885.

    CAS  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51–64.

    CAS  PubMed  Google Scholar 

  • Eberharter A, Becker PB . (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3: 224–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R . (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455.

    CAS  PubMed  Google Scholar 

  • Ehrenhofer-Murray AE, Rivier DH, Rine J . (1997). The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145: 923–934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich M . (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400–5413.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2006). Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 94: 179–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Favreau C, Dubosclard E, Ostlund C, Vigouroux C, Capeau J, Wehnert M et al. (2003). Expression of lamin A mutated in the carboxyl-terminal tail generates an aberrant nuclear phenotype similar to that observed in cells from patients with Dunnigan-type partial lipodystrophy and Emery-Dreifuss muscular dystrophy. Exp Cell Res 282: 14–23.

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.

    CAS  PubMed  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB et al. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 101: 8963–8968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groth A, Rocha W, Verreault A, Almouzni G . (2007). Chromatin challenges during DNA replication and repair. Cell 128: 721–733.

    CAS  PubMed  Google Scholar 

  • Grunstein M . (1997). Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.

    CAS  PubMed  Google Scholar 

  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT et al. (2005). Involvement of human MOF in ATM function. Mol Cell Biol 25: 5292–5305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halkidou K, Gnanapragasam VJ, Mehta PB, Logan IR, Brady ME, Cook S et al. (2003). Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22: 2466–2477.

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Tokuchi Y, Hayashi M, Kobayashi Y, Nishida K, Hayashi S et al. (1999). p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early-stage non-small cell lung carcinomas. Cancer Res 59: 5572–5577.

    CAS  PubMed  Google Scholar 

  • Hayes VM, Dirven CM, Dam A, Verlind E, Molenaar WM, Mooij JJ et al. (1999). High frequency of TP53 mutations in juvenile pilocytic astrocytomas indicates role of TP53 in the development of these tumors. Brain Pathol 9: 463–467.

    CAS  PubMed  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC . (1997). mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. Embo J 16: 2054–2060.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka M, Stillman B . (1999). Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274: 23027–23034.

    CAS  PubMed  Google Scholar 

  • Iizuka M, Matsui T, Takisawa H, Smith MM . (2006). Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26: 1098–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R . (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288: 1422–1425.

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  • Katan-Khaykovich Y, Struhl K . (2005). Heterochromatin formation involves changes in histone modifications over multiple cell generations. Embo J 24: 2138–2149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T et al. (2006). MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20: 1321–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C et al. (2005). Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434: 921–926.

    CAS  PubMed  Google Scholar 

  • Kimura A, Horikoshi M . (1998). Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3: 789–800.

    CAS  PubMed  Google Scholar 

  • Kimura A, Umehara T, Horikoshi M . (2002). Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32: 370–377.

    PubMed  Google Scholar 

  • Kindle KB, Troke PJ, Collins HM, Matsuda S, Bossi D, Bellodi C et al. (2005). MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. Mol Cell Biol 25: 988–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N et al. (2001). Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia 15: 89–94.

    CAS  PubMed  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    CAS  PubMed  Google Scholar 

  • Leitao MM, Soslow RA, Baergen RN, Olvera N, Arroyo C, Boyd J . (2004). Mutation and expression of the TP53 gene in early stage epithelial ovarian carcinoma. Gynecol Oncol 93: 301–306.

    CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    CAS  PubMed  Google Scholar 

  • Liu J, Rolef Ben-Shahar T, Riemer D, Treinin M, Spann P, Weber K et al. (2000). Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell 11: 3937–3947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lleonart ME, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M et al. (2006). New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16: 603–608.

    CAS  PubMed  Google Scholar 

  • Lucchesi JC, Kelly WG, Panning B . (2005). Chromatin remodeling in dosage compensation. Annu Rev Genet 39: 615–651.

    CAS  PubMed  Google Scholar 

  • Mendjan S, Akhtar A . (2007). The right dose for every sex. Chromosoma 116: 95–106.

    PubMed  Google Scholar 

  • Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M et al. (2006). Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21: 811–823.

    CAS  PubMed  Google Scholar 

  • Meyers FJ, Chi SG, Fishman JR, deVere White RW, Gumerlock PH . (1993). p53 mutations in benign prostatic hyperplasia. J Natl Cancer Inst 85: 1856–1858.

    CAS  PubMed  Google Scholar 

  • Munks RJ, Moore J, O’Neill LP, Turner BM . (1991). Histone H4 acetylation in Drosophila. Frequency of acetylation at different sites defined by immunolabelling with site-specific antibodies. FEBS Lett 284: 245–248.

    CAS  PubMed  Google Scholar 

  • Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa J et al. (2007). Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J 402: 559–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B et al. (2001). Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10: 395–404.

    CAS  PubMed  Google Scholar 

  • Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM . (2002). MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation. J Biol Chem 277: 50860–50866.

    CAS  PubMed  Google Scholar 

  • Pelletier N, Champagne N, Stifani S, Yang XJ . (2002). MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21: 2729–2740.

    CAS  PubMed  Google Scholar 

  • Prokocimer M, Margalit A, Gruenbaum Y . (2006). The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy. J Struct Biol 155: 351–360.

    CAS  PubMed  Google Scholar 

  • Rea S, Akhtar A . (2006). MSL proteins and the regulation of gene expression. Curr Top Microbiol Immunol 310: 117–140.

    CAS  PubMed  Google Scholar 

  • Reifnyder C, Lowell J, Clarke A, Pillus L . (1997). Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 16: 109.

    CAS  PubMed  Google Scholar 

  • Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD . (2002). Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 16: 2225–2230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjuan R, Marin I . (2001). Tracing the origin of the compensasome: evolutionary history of DEAH helicase and MYST acetyltransferase gene families. Mol Biol Evol 18: 330–343.

    CAS  PubMed  Google Scholar 

  • Sharma M, Zarnegar M, Li X, Lim B, Sun Z . (2000). Androgen receptor interacts with a novel MYST protein, HBO1. J Biol Chem 275: 35200–35208.

    CAS  PubMed  Google Scholar 

  • Shia WJ, Osada S, Florens L, Swanson SK, Washburn MP, Workman JL . (2005). Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 280: 11987–11994.

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL . (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847.

    CAS  PubMed  Google Scholar 

  • Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC . (2005). A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25: 9175–9188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD et al. (2000). The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20: 312–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Squatrito M, Gorrini C, Amati B . (2006). Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16: 433–442.

    CAS  PubMed  Google Scholar 

  • Stedman W, Deng Z, Lu F, Lieberman PM . (2004). ORC, MCM, and histone hyperacetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J Virol 78: 12566–12575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl BD, Allis CD . (2000). The language of covalent histone modifications. Nature 403: 41–45.

    CAS  PubMed  Google Scholar 

  • Straub T, Becker PB . (2007). Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8: 47–57.

    CAS  PubMed  Google Scholar 

  • Suka N, Luo K, Grunstein M . (2002). Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32: 378–383.

    CAS  PubMed  Google Scholar 

  • Sutton A, Shia WJ, Band D, Kaufman PD, Osada S, Workman JL et al. (2003). Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 278: 16887–16892.

    CAS  PubMed  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. (2006). Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A et al. (2005). hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25: 6798–6810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamburini BA, Tyler JK . (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25: 4903–4913.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W . (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827–839.

    CAS  PubMed  Google Scholar 

  • Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL et al. (2006). Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev 20: 1175–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ting AH, McGarvey KM, Baylin SB . (2006). The cancer epigenome-components and functional correlates. Genes Dev 20: 3215–3231.

    CAS  PubMed  Google Scholar 

  • Turner BM, Birley AJ, Lavender J . (1992). Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.

    CAS  PubMed  Google Scholar 

  • Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Cote J . (2005). Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25: 8179–8190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vousden KH . (2006). Outcomes of p53 activation--spoilt for choice. J Cell Sci 119: 5015–5020.

    CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL et al. (2005). WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121: 859–872.

    CAS  PubMed  Google Scholar 

  • Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E et al. (2004). Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23: 1792–1803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Horikoshi M . (1997). Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem 272: 30595–30598.

    CAS  PubMed  Google Scholar 

  • Yang XJ . (2004). The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32: 959–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zink D, Fischer AH, Nickerson JA . (2004). Nuclear structure in cancer cells. Nat Rev Cancer 4: 677–687.

    CAS  PubMed  Google Scholar 

  • Zong H, Li Z, Liu L, Hong Y, Yun X, Jiang J et al. (2005). Cyclin-dependent kinase 11(p58) interacts with HBO1 and enhances its histone acetyltransferase activity. FEBS Lett 579: 3579–3588.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gaelle Legube and Mikko Taipale for helpful suggestions. We apologize to colleagues whose work could not be cited due to space limitation. SR is funded by an international Human Frontiers Science Program Organization long-term fellowship. GX is funded by DFG funded SFB ‘Transregio5’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Akhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rea, S., Xouri, G. & Akhtar, A. Males absent on the first (MOF): from flies to humans. Oncogene 26, 5385–5394 (2007). https://doi.org/10.1038/sj.onc.1210607

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210607

Keywords

This article is cited by

Search

Quick links