Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Repression of intestinal drug metabolizing enzymes by the SV40 large T antigen

Abstract

Toxic compounds such as carcinogens are removed from the body by the action of a series of detoxifying enzymes and transporters expressed in the liver and the small intestine. We have found that intestinal epithelial cells expressing the SV40 large T antigen (TAg) contain significantly lower levels of mRNAs, encoding several drug metabolizing/detoxifying enzymes and transporters compared to their non-transgenic littermates. In addition, TAg blocks the induction of these mRNAs by xenobiotics. The repression depends on an intact LXCXE motif in TAg, suggesting that inactivation of the retinoblastoma (Rb) family of tumor suppressors plays a role in the process. These results imply that a functional Rb pathway in the intestine is necessary for the expression of the detoxification system used to clear carcinogens, and suggest that loss of this tumor suppressor might alter susceptibility to chemical injury. In addition, the effect of TAg on the detoxification pathway appears to be tissue-specific, as its ectopic expression in the liver failed to suppress the P450 enzymes. The TAg-mediated suppression of drug metabolizing/detoxifying enzymes may have broad implications in the metabolism and mechanism of action of both carcinogens and prescription drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahuja D, Saenz-Robles MT, Pipas JM . (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24: 7729–7745.

    Article  CAS  PubMed  Google Scholar 

  • Bosco EE, Mayhew CN, Hennigan RF, Sage J, Jacks T, Knudsen ES . (2004). RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Res 32: 25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumberg B, Sabbagh W, Juguilon H, Bolado Jr J, Ong ES, Evans RM . (1998). SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12: 3195–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran C, Coopersmith CM, Gordon JI . (1996). Use of normal and transgenic mice to examine the relationship between terminal differentiation of intestinal epithelial cells and accumulation of their cell cycle regulators. J Biol Chem 271: 28414–28421.

    Article  CAS  PubMed  Google Scholar 

  • Chrivia JC, Kwok RPS, Lamb N, Hagiwara M, Montminy MR, Goodman RH . (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859.

    Article  CAS  PubMed  Google Scholar 

  • Cohn SM, Simon TC, Roth KA, Birkenmeier EH, Gordon JI . (1992). Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and crypt-villus axes of the gut epithelium. J Cell Biol 119: 27–44.

    Article  CAS  PubMed  Google Scholar 

  • DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH et al. (1988). SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Ewen ME, Ludlow JW, Marsilio E, DeCaprio JA, Millikan RC, Cheng SH et al. (1989). An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell 58: 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Hauft SM, Kim SH, Schmidt GH, Pease S, Rees S, Harris S et al. (1992). Expression of SV-40 T antigen in the small intestinal epithelium of transgenic mice results in proliferative changes in the crypt and reentry of villus-associated enterocytes into the cell cycle but has no apparent effect on cellular differentiation programs and does not cause neoplastic transformation. J Cell Biol 117: 825–839.

    Article  CAS  PubMed  Google Scholar 

  • Kim RB . (2003). Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest 33: 1–5.

    Article  PubMed  Google Scholar 

  • Kim SH, Roth KA, Coopersmith CM, Pipas JM, Gordon JI . (1994). Expression of wild-type and mutant simian virus 40 large tumor antigens in villus-associated enterocytes of transgenic mice. Proc Natl Acad Sci USA 91: 6914–6918.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Roth KA, Moser AR, Gordon JI . (1993). Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia. J Cell Biol 123: 877–893.

    Article  CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA . (2003). ABC transporter regulation by bile acids: where PXR meets FXR. J Hepatol 39: 628–630.

    Article  CAS  PubMed  Google Scholar 

  • Kliewer SA, Moore JT, Wade L, Staudinger JL, Jones MA, McKee DD et al. (1998). An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Song YK, Liu D . (1999). Hydrodynamic-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 6: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  • Maurel P . (1996). The CYP3 family. In: Ioannides C (ed). Cytochrome P450: Metabolic and Toxicological Aspects. CRC Press: Boca Raton, FL, pp 241–270.

    Google Scholar 

  • Mayhew CN, Perkin LM, Zhang X, Sage J, Jacks T, Knudsen ES . (2004). Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene 23: 4107–4120.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y . (2003). Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 55: 425–461.

    Article  CAS  PubMed  Google Scholar 

  • McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI . (2001). Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62: 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Oyama T, Kagawa N, Kunugita N, Kitagawa K, Ogawa M, Yamaguchi T et al. (2004). Expression of cytochrome P450 in tumor tissues and its association with cancer development. Front Biosci 9: 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  • Puga A, Marlowe J, Barnes S, Chang CY, Maier A, Tan Z et al. (2002). Role of the aryl hydrocarbon receptor in cell cycle regulation. Toxicology 181–182: 171–177.

    Article  PubMed  Google Scholar 

  • Renton KW . (2004). Cytochrome P450 regulation and drug biotransformation during inflammation and infection. Curr Drug Metab 5: 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Antona C, Ingelman-Sundberg M . (2006). Cytochrome P450 pharmacogenetics and cancer. Oncogene 26: 1679–1691.

    Article  Google Scholar 

  • Rooseboom M, Commandeur JN, Vermeulen NP . (2004). Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 56: 53–102.

    Article  CAS  PubMed  Google Scholar 

  • Saini SP, Mu Y, Gong H, Toma D, Uppal H, Ren S et al. (2005). Dual role of orphan nuclear receptor pregnane X receptor in bilirubin detoxification in mice. Hepatology 41: 497–505.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan A, McClellan AJ, Vartikar J, Marks I, Cantalupo P, Li Y, Whyte P et al. (1997). The amino-terminal transforming region of simian virus 40 large T and small T antigens functions as a J domain. Mol Cell Biol 17: 4761–4773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sompayrac L . (1997). SV40 and adenovirus may act as cocarcinogens by downregulating glutathione S-transferase expression. Virology 233: 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Uppal H, Toma D, Saini SPS, Ren S, Jones TJ, Xie W . (2005). Combined loss of orphan receptors PXR and CAR heightens the sensitivity to toxic bile acids in mice. Hepatology 41: 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC et al. (2004). Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32: 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Barwick JL, Simon CM, Downes M, Blumberg B, Neuschwander-Tetri BA et al. (2000). Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406: 435–439.

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Uppal H, Saini SPS, Mu Y, Little JM, Radominska-Pandya A et al. (2004). Orphan nuclear receptor-mediated xenobiotic regulation in drug metabolism and human diseases. Drug Discov 9: 442–449.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Ying Mu for his help in transfection studies. This work was supported by NIH Grants CA40586 and CA098956 to JMP and ES012479 and CA107011 to WX. HG is supported by a Susan G Komen Breast Cancer Foundation Postdoctoral Fellowship (PDF053458).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J M Pipas or W Xie.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáenz-Robles, M., Toma, D., Cantalupo, P. et al. Repression of intestinal drug metabolizing enzymes by the SV40 large T antigen. Oncogene 26, 5124–5131 (2007). https://doi.org/10.1038/sj.onc.1210310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210310

Keywords

Search

Quick links