Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Antibody-targeted vaccines

Abstract

The specificity and high affinity binding of antibodies provides these molecules with ideal properties for delivering a payload to target cells. This concept has been commercialized for cancer therapies using toxin- or radionucleotide-conjugated antibodies that are designed to selectively deliver cytotoxic molecules to cancer cells. Exploiting the same effective characteristics of antibodies, antibody-targeted vaccines (ATV) are designed to deliver disease-specific antigens to professional antigen-presenting cells (APCs), thus enabling the host's immune system to recognize and eliminate malignant or infected cells through adaptive immunity. The concept of ATVs has been in development for many years, and recently has entered clinical trials. Early studies with ATVs focused on the ability to induce humoral immunity in the absence of adjuvants. More recently, ATVs targeted to C-type lectin receptors have been exploited for induction of potent helper and cytolytic T-cell responses. To maximize their stimulatory capacity, the ATVs are being evaluated with a variety of adjuvants or other immunostimulatory agents. In the absence of co-administered immunostimulatory signals, APC-targeting can induce antigen-specific tolerance and, thus, may also be exploited in developing specific treatments for autoimmune and allergic diseases, or for preventing transplant rejection. The successful clinical application of this new class of antibody-based products will clearly depend on using appropriate combinations with other strategies that influence the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agnes MC, Tan A, Jordens R, Geluk A, Roep BO, Ottenhoff T et al. (1998). Strongly increased efficiency of altered peptide ligands by mannosylation. Int Immunol 10: 1299–1304.

    CAS  PubMed  Google Scholar 

  • Allavena P, Chieppa M, Monti P, Piemonti L . (2004). From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol 24: 179–192.

    CAS  PubMed  Google Scholar 

  • Apostolopoulos V, Pietersz GA, Gordon S, Martinez-Pomares L, McKenzie IF . (2000). Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol 30: 1714–1723.

    CAS  PubMed  Google Scholar 

  • Ariizumi K, Shen GL, Shikano S, Xu S, Ritter III R, Kumamoto T et al. (2000). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275: 20157–20167.

    CAS  PubMed  Google Scholar 

  • Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Eilering JB, Martin MP et al. (2001). A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193: 671–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry JD, Licea A, Popkov M, Cortez X, Fuller R, Elia M et al. (2003). Rapid monoclonal antibody generation via dendritic cell targeting in vivo. Hybrid Hybridomics 22: 23–31.

    CAS  PubMed  Google Scholar 

  • Bevan MJ . (1976). Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143: 1283–1288.

    CAS  PubMed  Google Scholar 

  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM . (2002). Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196: 1627–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. (2004a). In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199: 815–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. (2004b). In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199: 815–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boskovic J, Arnold JN, Stilion R, Gordon S, Sim RB, Rivera-Calzada A et al. (2006). Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor. J Biol Chem 281: 8780–8787.

    CAS  PubMed  Google Scholar 

  • Brown GD . (2006). Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6: 33–43.

    CAS  PubMed  Google Scholar 

  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S . (2003). Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197: 1119–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruder D, Westendorf AM, Hansen W, Prettin S, Gruber AD, Qian Y et al. (2005). On the edge of autoimmunity: T-cell stimulation by steady-state dendritic cells prevents autoimmune diabetes. Diabetes 54: 3395–3401.

    CAS  PubMed  Google Scholar 

  • Burgdorf S, Lukacs-Kornek V, Kurts C . (2006). The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol 176: 6770–6776.

    CAS  PubMed  Google Scholar 

  • Butler SA, Iles RK . (2003). Ectopic human chorionic gonadotropin beta secretion by epithelial tumors and human chorionic gonadotropin beta-induced apoptosis in Kaposi's sarcoma: is there a connection? Clin Cancer Res 9: 4666–4673.

    CAS  PubMed  Google Scholar 

  • Carayanniotis G, Barber BH . (1987). Adjuvant-free IgG responses induced with antigen coupled to antibodies against class II MHC. Nature 327: 59–61.

    CAS  PubMed  Google Scholar 

  • Carayanniotis G, Barber BH . (1990). Characterization of the adjuvant-free serological response to protein antigens coupled to antibodies specific for class II MHC determinants. Vaccine 8: 137–144.

    CAS  PubMed  Google Scholar 

  • Carayanniotis G, Skea DL, Luscher MA, Barber BH . (1991). Adjuvant-independent immunization by immunotargeting antigens to MHC and non-MHC determinants in vivo. Mol Immunol 28: 261–267.

    CAS  PubMed  Google Scholar 

  • Carayanniotis G, Vizi E, Parker JM, Hodges RS, Barber BH . (1988). Delivery of synthetic peptides by anti-class II MHC monoclonal antibodies induces specific adjuvant-free IgG responses in vivo. Mol Immunol 25: 907–911.

    CAS  PubMed  Google Scholar 

  • Carter RW, Thompson C, Reid DM, Wong SY, Tough DF . (2006a). Induction of CD8+ T cell responses through targeting of antigen to Dectin-2. Cell Immunol 239: 87–91.

    CAS  PubMed  Google Scholar 

  • Carter RW, Thompson C, Reid DM, Wong SY, Tough DF . (2006b). Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J Immunol 177: 2276–2284.

    CAS  PubMed  Google Scholar 

  • Charalambous A, Oks M, Nchinda G, Yamazaki S, Steinman RM . (2006). Dendritic cell targeting of survivin protein in a xenogeneic form elicits strong CD4+ T cell immunity to mouse survivin. J Immunol 177: 8410–8421.

    CAS  PubMed  Google Scholar 

  • Chen CH, Floyd H, Olson NE, Magaletti D, Li C, Draves K et al. (2006). Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood 107: 1459–1467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnut RW, Grey HM . (1981). Studies on the capacity of B cells to serve as antigen-presenting cells. J Immunol 126: 1075–1079.

    CAS  PubMed  Google Scholar 

  • Chieppa M, Bianchi G, Doni A, Del Prete A, Sironi M, Laskarin G et al. (2003). Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 171: 4552–4560.

    CAS  PubMed  Google Scholar 

  • Dakappagari N, Maruyama T, Renshaw M, Tacken P, Figdor C, Torensma R et al. (2006). Internalizing antibodies to the C-type lectins, L-SIGN and DC-SIGN, inhibit viral glycoprotein binding and deliver antigen to human dendritic cells for the induction of T cell responses. J Immunol 176: 426–440.

    CAS  PubMed  Google Scholar 

  • Deslee G, Charbonnier AS, Hammad H, Angyalosi G, Tillie-Leblond I, Mantovani A et al. (2002). Involvement of the mannose receptor in the uptake of Der p 1, a major mite allergen, by human dendritic cells. J Allergy Clin Immunol 110: 763–770.

    CAS  PubMed  Google Scholar 

  • Ezekowitz RA, Williams DJ, Koziel H, Armstrong MY, Warner A, Richards FF et al. (1991). Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351: 155–158.

    CAS  PubMed  Google Scholar 

  • Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC . (1996). Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol 157: 1406–1414.

    CAS  PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM . (2003). Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197: 1107–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y et al. (2000). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Gordon S . (2002). Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927–930.

    CAS  PubMed  Google Scholar 

  • Guo M, Gong S, Maric S, Misulovin Z, Pack M, Mahnke K et al. (2000). A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum Immunol 61: 729–738.

    CAS  PubMed  Google Scholar 

  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M et al. (2001). Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194: 769–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He LZ, Crocker A, Vitlae L, O'Neill T, Clynes R, Keler T . (2006). Targeting antigens to the human mannose receptor expressed in transgenic mice elicits potent CD4 and CD8 responses in vivo. Proc Amer Assoc Cancer Res 47: 334-c–335-c.

    Google Scholar 

  • He LZ, Ramakrishna V, Connolly JE, Wang XT, Smith PA, Jones CL et al. (2004). A novel human cancer vaccine elicits cellular responses to the tumor-associated antigen, human chorionic gonadotropin beta. Clin Cancer Res 10: 1920–1927.

    CAS  PubMed  Google Scholar 

  • Heath WR, Carbone FR . (2001). Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19: 47–64.

    CAS  PubMed  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM et al. (1995). The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375: 151–155.

    CAS  PubMed  Google Scholar 

  • Kato M, McDonald KJ, Khan S, Ross IL, Vuckovic S, Chen K et al. (2006). Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol 18: 857–869.

    CAS  PubMed  Google Scholar 

  • Keler T, He L, Graziano RF . (2005). Development of antibody-targeted vaccines. Curr Opin Mol Ther 7: 157–163.

    CAS  PubMed  Google Scholar 

  • Keler T, Ramakrishna V, Fanger MW . (2004). Mannose receptor-targeted vaccines. Expert Opin Biol Ther 4: 1953–1962.

    CAS  PubMed  Google Scholar 

  • Larche M, Akdis CA, Valenta R . (2006). Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol 6: 761–771.

    CAS  PubMed  Google Scholar 

  • Larch M, Wraith DC . (2005). Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nature Medicine 11: S69–S76.

    Google Scholar 

  • Le Cabec V, Emorine LJ, Toesca I, Cougoule C, Maridonneau-Parini I . (2005). The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 77: 934–943.

    CAS  PubMed  Google Scholar 

  • Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M et al. (2000). The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151: 673–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH . (2005). Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res 65: 7007–7012.

    CAS  PubMed  Google Scholar 

  • Maksimow M, Miiluniemi M, Marttila-Ichihara F, Jalkanen S, Hanninen A . (2006). Antigen targeting to endosomal pathway in dendritic cell vaccination activates regulatory T cells and attenuates tumor immunity. Blood 108: 1298–1305.

    CAS  PubMed  Google Scholar 

  • Mansour MK, Latz E, Levitz SM . (2006). Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J Immunol 176: 3053–3061.

    CAS  PubMed  Google Scholar 

  • McGreal EP, Miller JL, Gordon S . (2005). Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 17: 18–24.

    CAS  PubMed  Google Scholar 

  • McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S et al. (2006). The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16: 422–430.

    CAS  PubMed  Google Scholar 

  • McKenzie EJ, Su YP, Martinez-Pomares L . (2002). The mannose receptor, a Bi-functional lectin with roles in homeostasis and immunity. Trends Glycosci Glycotechnol 14: 273–283.

    CAS  Google Scholar 

  • Melief CJ . (2003). Mini-review: regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur J Immunol 33: 2645–2654.

    CAS  PubMed  Google Scholar 

  • Mellman I, Steinman RM . (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell 106: 255–258.

    CAS  PubMed  Google Scholar 

  • Mommaas AM, Mulder AA, Jordens R, Out C, Tan MC, Cresswell P et al. (1999). Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules. Eur J Immunol 29: 571–580.

    CAS  PubMed  Google Scholar 

  • Pohlmann S, Baribaud F, Doms RW . (2001). DC-SIGN and DC-SIGNR: helping hands for HIV. Trends Immunol 22: 643–646.

    CAS  PubMed  Google Scholar 

  • Pyz E, Marshall AS, Gordon S, Brown GD . (2006). C-type lectin-like receptors on myeloid cells. Ann Med 38: 242–251.

    CAS  PubMed  Google Scholar 

  • Ramakrishna V, Treml JF, Vitale L, Connolly JE, O'Neill T, Smith PA et al. (2004). Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J Immunol 172: 2845–2852.

    CAS  PubMed  Google Scholar 

  • Rock KL . (1996). A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today 17: 131–137.

    CAS  PubMed  Google Scholar 

  • Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E et al. (2005). Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22: 507–517.

    CAS  PubMed  Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A . (1995). Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182: 389–400.

    CAS  PubMed  Google Scholar 

  • Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K et al. (2006). Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281: 38854–38866.

    CAS  PubMed  Google Scholar 

  • Schjetne KW, Thommesen JE, Fredriksen AB, Lunde E, Sandlie I, Bogen B . (2005). Induction of central T cell tolerance: recombinant antibodies deliver peptides for deletion of antigen-specific (CD4+)8+ thymocytes. Eur J Immunol 35: 3142–3152.

    CAS  PubMed  Google Scholar 

  • Schjetne KW, Thompson KM, Aarvak T, Fleckenstein B, Sollid LM, Bogen B . (2002). A mouse C kappa-specific T cell clone indicates that DC-SIGN is an efficient target for antibody-mediated delivery of T cell epitopes for MHC class II presentation. Int Immunol 14: 1423–1430.

    CAS  PubMed  Google Scholar 

  • Snider D, Segal D . (1989). Efficiency of antigen presentation after antigen targeting to surface IgD, IgM, MHC, Fc gamma RII, and B220 molecules on murine splenic B cells. J Immunol 143: 59–65.

    CAS  PubMed  Google Scholar 

  • Snider DP, Kaubisch A, Segal DM . (1990). Enhanced antigen immunogenicity induced by bispecific antibodies. J Exp Med 171: 1957–1963.

    CAS  PubMed  Google Scholar 

  • Snider DP, Segal DM . (1987). Targeted antigen presentation using crosslinked antibody heteroaggregates. J Immunol 139: 1609–1616.

    CAS  PubMed  Google Scholar 

  • Stahl PD . (1992). The mannose receptor and other macrophage lectins. Curr Opin Immunol 4: 49–52.

    CAS  PubMed  Google Scholar 

  • Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K et al. (2003). Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 987: 15–25.

    CAS  PubMed  Google Scholar 

  • Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP et al. (2005). Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 106: 1278–1285.

    CAS  PubMed  Google Scholar 

  • Tacken PJ, Torensma R, Figdor CG . (2006). Targeting antigens to dendritic cells in vivo. Immunobiology 211: 599–608.

    CAS  PubMed  Google Scholar 

  • Tan MC, Mommaas AM, Drijfhout JW, Jordens R, Onderwater JJ, Verwoerd D et al. (1997). Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol 27: 2426–2435.

    CAS  PubMed  Google Scholar 

  • Tony HP, Parker DC . (1985). Major histocompatibility complex-restricted, polyclonal B cell responses resulting from helper T cell recognition of antiimmunoglobulin presented by small B lymphocytes. J Exp Med 161: 223–241.

    CAS  PubMed  Google Scholar 

  • Triozzi PL, Stevens VC . (1999). Human chorionic gonadotropin as a target for cancer vaccines. Oncol Rep 6: 7–17.

    CAS  PubMed  Google Scholar 

  • Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B, Soares H et al. (2006). Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J Exp Med 203: 607–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL . (2003). The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J Leukoc Biol 74: 710–718.

    CAS  PubMed  Google Scholar 

  • Uccini S, Sirianni MC, Vincenzi L, Topino S, Stoppacciaro A, Lesnoni La Parola I et al. (1997). Kaposi's sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi's sarcoma patients. Am J Pathol 150: 929–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Kooyk Y, Engering A, Lekkerkerker AN, Ludwig IS, Geijtenbeek TB . (2004). Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr Opin Immunol 16: 488–493.

    CAS  PubMed  Google Scholar 

  • van Vliet SJ, Gringhuis SI, Geijtenbeek TB, van Kooyk Y . (2006). Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol 7: 1200–1208.

    CAS  PubMed  Google Scholar 

  • van Vuuren AJ, van Roon JA, Walraven V, Stuij I, Harmsen MC, McLaughlin PM et al. (2006). CD64-directed immunotoxin inhibits arthritis in a novel CD64 transgenic rat model. J Immunol 176: 5833–5838.

    CAS  PubMed  Google Scholar 

  • Wang H, Griffiths MN, Burton DR, Ghazal P . (2000). Rapid antibody responses by low-dose, single-step, dendritic cell-targeted immunization. Proc Natl Acad Sci USA 97: 847–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wenink MH, van den Berg WB, van Riel PL, Radstake TR . (2006). Fc gamma receptor mediated modulation of dendritic cells as a potential strategy in the battle against rheumatoid arthritis. Neth J Med 64: 103–108.

    CAS  PubMed  Google Scholar 

  • Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, Gunther S, Moderer M . (2002). Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 118: 327–334.

    CAS  PubMed  Google Scholar 

  • Zhang J, Tachado SD, Patel N, Zhu J, Imrich A, Manfruelli P et al. (2005). Negative regulatory role of mannose receptors on human alveolar macrophage proinflammatory cytokine release in vitro. J Leukoc Biol 78: 665–674.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors are R&D employees at Celldex Therapeutics, Phillipsburg, NJ or Cambridge UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Keler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keler, T., He, L., Ramakrishna, V. et al. Antibody-targeted vaccines. Oncogene 26, 3758–3767 (2007). https://doi.org/10.1038/sj.onc.1210375

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210375

Keywords

This article is cited by

Search

Quick links