Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity

Abstract

In spite of the fact that cyclin-dependent kinase (cdk) inhibiting drugs are potent transcriptional repressors, we discover that p57 (Kip2, CDKN1C) transcription is significantly upregulated by three small molecule cdk inhibitors, including BMS-387032. Treatment of MDA-MB-231 breast cancer cells with BMS-387032 led to a stabilization of the E2F1 protein that was accompanied by significant increases in the p57 mRNA and protein. This increase did not occur in an E2F1-deficient cell line. An E2F1-estrogen receptor fusion protein activated the endogenous p57 promoter in response to hydroxytamoxifen treatment in the presence of cycloheximide. Luciferase constructs driven by the p57 promoter verified that upregulation of p57 mRNA by BMS-387032 is transcriptional and dependent on E2F-binding sites in the promoter. Expression of exogenous p57 significantly decreased the fraction of cells in S phase. Furthermore, p57-deficient MDA-MB-231 cell lines were significantly more sensitive to BMS-387032-induced apoptosis than controls. The results presented in this manuscript demonstrate that small molecule cdk inhibitors transcriptionally activate p57 dependent upon E2F1 and that this activation in turn serves to limit E2F1's death-inducing activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Afshari CA, Nichols MA, Xiong Y, Mudryj M . (1996). A role for a p21-E2F interaction during senescence arrest of normal human fibroblasts. Cell Growth Differ 7: 979–988.

    CAS  PubMed  Google Scholar 

  • Alheim K, Corness J, Samuelsson MK, Bladh LG, Murata T, Nilsson T et al. (2003). Identification of a functional glucocorticoid response element in the promoter of the cyclin-dependent kinase inhibitor p57Kip2. J Mol Endocrinol 30: 359–368.

    Article  CAS  Google Scholar 

  • Balint E, Phillips AC, Kozlov S, Stewart CL, Vousden KH . (2002). Induction of p57(KIP2) expression by p73beta. Proc Natl Acad Sci USA 99: 3529–3534.

    Article  CAS  Google Scholar 

  • Brideau AD, Banfield BW, Enquist LW . (1998). The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72: 4560–4570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cress WD, Johnson DG, Nevins JR . (1993). A genetic analysis of the E2F1 gene distinguishes regulation by Rb, p107, and adenovirus E4. Mol Cell Biol 13: 6314–6325.

    Article  CAS  Google Scholar 

  • Cress WD, Nevins JR . (1994). Interacting domains of E2F1, DP1, and the adenovirus E4 protein. J Virol 68: 4213–4219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delavaine L, La Thangue NB . (1999). Control of E2F activity by p21Waf1/Cip1. Oncogene 18: 5381–5392.

    Article  CAS  Google Scholar 

  • Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP . (2005). p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 19: 1485–1495.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Gartel AL, Goufman E, Tevosian SG, Shih H, Yee AS, Tyner AL . (1998). Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins. Oncogene 17: 3463–3469.

    Article  CAS  Google Scholar 

  • Gartel AL, Najmabadi F, Goufman E, Tyner AL . (2000). A role for E2F1 in Ras activation of p21(WAF1/CIP1) transcription. Oncogene 19: 961–964.

    Article  CAS  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S et al. (2003). Cyclin E ablation in the mouse. Cell 114: 431–443.

    Article  CAS  Google Scholar 

  • Gonzalez S, Perez-Perez MM, Hernando E, Serrano M, Cordon-Cardo C . (2005). p73beta-Mediated apoptosis requires p57kip2 induction and IEX-1 inhibition. Cancer Res 65: 2186–2192.

    Article  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  Google Scholar 

  • Hiyama H, Iavarone A, LaBaer J, Reeves SA . (1997). Regulated ectopic expression of cyclin D1 induces transcriptional activation of the cdk inhibitor p21 gene without altering cell cycle progression. Oncogene 14: 2533–2542.

    Article  CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648.

    Article  CAS  Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  Google Scholar 

  • Jackson RJ, Adnane J, Coppola D, Cantor A, Sebti SM, Pledger WJ . (2002). Loss of the cell cycle inhibitors p21(Cip1) and p27(Kip1) enhances tumorigenesis in knockout mouse models. Oncogene 21: 8486–8497.

    Article  CAS  Google Scholar 

  • Jackson RJ, Engelman RW, Coppola D, Cantor AB, Wharton W, Pledger WJ . (2003). p21Cip1 nullizygosity increases tumor metastasis in irradiated mice. Cancer Res 63: 3021–3025.

    CAS  PubMed  Google Scholar 

  • Jiang J, Matranga CB, Cai D, Latham Jr VM, Zhang X, Lowell AM et al. (2003). Flavopiridol-induced apoptosis during S phase requires E2F-1 and inhibition of cyclin A-dependent kinase activity. Cancer Res 63: 7410–7422.

    CAS  PubMed  Google Scholar 

  • Johnson DG . (1995). Regulation of E2F-1 gene expression by p130 (Rb2) and D-type cyclin kinase activity. Oncogene 11: 1685–1692.

    CAS  PubMed  Google Scholar 

  • Johnson DG, Ohtani K, Nevins JR . (1994). Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev 8: 1514–1525.

    Article  CAS  Google Scholar 

  • Kalejta RF, Brideau AD, Banfield BW, Beavis AJ . (1999). An integral membrane green fluorescent protein marker, Us9-GFP, is quantitatively retained in cells during propidium iodide-based cell cycle analysis by flow cytometry. Exp Cell Res 248: 322–328.

    Article  CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR . (1987). Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc Natl Acad Sci USA 84: 2180–2184.

    Article  CAS  Google Scholar 

  • Lam LT, Pickeral OK, Peng AC, Rosenwald A, Hurt EM, Giltnane JM et al. (2001). Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2: research0041.1–research0041.11.

    Article  Google Scholar 

  • Lee MH, Reynisdottir I, Massague J . (1995). Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9: 639–649.

    Article  CAS  Google Scholar 

  • Lu X, Burgan WE, Cerra MA, Chuang EY, Tsai MH, Tofilon PJ et al. (2004). Transcriptional signature of flavopiridol-induced tumor cell death. Mol Cancer Ther 3: 861–872.

    PubMed  Google Scholar 

  • Ma Y, Cress WD, Haura EB . (2003a). Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of Mcl-1. Mol Cancer Ther 2: 73–81.

    CAS  PubMed  Google Scholar 

  • Ma Y, Croxton R, Moorer Jr RL, Cress WD . (2002). Identification of novel E2F1-regulated genes by microarray. Arch Biochem Biophys 399: 212–224.

    Article  CAS  Google Scholar 

  • Ma Y, Freeman SN, Cress WD . (2004). E2F4 deficiency promotes drug-induced apoptosis. Cancer Biol Ther 3: 1262–1269.

    Article  CAS  Google Scholar 

  • Ma Y, Yuan J, Huang M, Jove R, Cress WD . (2003b). Regulation of the cyclin D3 promoter by E2F1. J Biol Chem 278: 16770–16776.

    Article  CAS  Google Scholar 

  • Matranga CB, Shapiro GI . (2002). Selective sensitization of transformed cells to flavopiridol-induced apoptosis following recruitment to S-phase. Cancer Res 62: 1707–1717.

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A et al. (1995). p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650–662.

    Article  CAS  Google Scholar 

  • Merlo P, Fulco M, Costanzo A, Mangiacasale R, Strano S, Blandino G et al. (2005). A role of p73 in mitotic exit. J Biol Chem 280: 30354–30360.

    Article  CAS  Google Scholar 

  • Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C et al. (1992). A family of human cdc2-related protein kinases. Embo J 11: 2909–2917.

    Article  CAS  Google Scholar 

  • Nevins JR . (2001). The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699–703.

    Article  CAS  Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R et al. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35: 25–31.

    Article  CAS  Google Scholar 

  • Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al. (1994). Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66.

    Article  CAS  Google Scholar 

  • Samuelsson MK, Pazirandeh A, Okret S . (2002). A pro-apoptotic effect of the CDK inhibitor p57(Kip2) on staurosporine-induced apoptosis in HeLa cells. Biochem Biophys Res Commun 296: 702–709.

    Article  CAS  Google Scholar 

  • Schulze A, Zerfass K, Spitkovsky D, Middendorp S, Berges J, Helin K et al. (1995). Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci USA 92: 11264–11268.

    Article  CAS  Google Scholar 

  • Shan B, Chang CY, Jones D, Lee WH . (1994). The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol Cell Biol 14: 299–309.

    Article  CAS  Google Scholar 

  • Shapiro GI . (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncology 24: 1770–1783.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    CAS  Google Scholar 

  • Stewart MC, Kadlcek RM, Robbins PD, MacLeod JN, Ballock RT . (2004). Expression and activity of the CDK inhibitor p57Kip2 in chondrocytes undergoing hypertrophic differentiation. J Bone Miner Res 19: 123–132.

    Article  CAS  Google Scholar 

  • Stiewe T, Putzer BM . (2000). Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 26: 464–469.

    Article  CAS  Google Scholar 

  • Tetsu O, McCormick F . (2003). Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3: 233–245.

    Article  CAS  Google Scholar 

  • Toyoshima H, Hunter T . (1994). p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78: 67–74.

    Article  CAS  Google Scholar 

  • Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC et al. (1999). CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 19: 6379–6395.

    Article  CAS  Google Scholar 

  • Wang C, Hou X, Mohapatra S, Ma Y, Cress WD, Pledger WJ et al. (2005). Activation of p27Kip1 Expression by E2F1. A negative feedback mechanism. J Biol Chem 280: 12339–12343.

    Article  CAS  Google Scholar 

  • Zhu L, Xie E, Chang LS . (1995). Differential roles of two tandem E2F sites in repression of the human p107 promoter by retinoblastoma and p107 proteins. Mol Cell Biol 15: 3552–3562.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jack Pledger, Scott Freeman and Jose Rodriguez for scientific input. We also acknowledge Gabriela Wright and Monica Dickinson for performing many experiments. In addition, we thank numerous colleagues for gifts of essential reagents and materials (see Methods and materials). This work was supported by funds from the National Cancer Institute (CA90489-01, WDC) and by the Molecular Biology, Flow Cytometry, Analytical Microscopy, and the Molecular Imaging Core Facilities of the Moffitt Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W D Cress.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Cress, W. Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity. Oncogene 26, 3532–3540 (2007). https://doi.org/10.1038/sj.onc.1210143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210143

Keywords

This article is cited by

Search

Quick links