Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of clustered gene expression by cofactor of BRCA1 (COBRA1) in breast cancer cells

Abstract

Eucaryotic genes that are coordinately expressed tend to be clustered. Furthermore, gene clusters across chromosomal regions are often upregulated in various tumors. However, relatively little is known about how gene clusters are coordinately expressed in physiological or pathological conditions. Cofactor of BRCA1 (COBRA1), a subunit of the human negative elongation factor, has been shown to repress estrogen-stimulated transcription of trefoil factor 1 (TFF1 or pS2) by stalling RNA polymerase II. Here, we carried out a genome-wide study to identify additional physiological target genes of COBRA1 in breast cancer cells. The study identified a total of 134 genes that were either activated or repressed upon small hairpin RNA-mediated reduction of COBRA1. Interestingly, many COBRA1-regulated genes reside as clusters on the chromosomes and have been previously implicated in cancer development. Detailed examination of two such clusters on chromosome 21 (21q22) and chromosome X (Xp11) reveals that COBRA1 is physically associated with a subset of its regulated genes in each cluster. In addition, COBRA1 was shown to regulate both estrogen-dependent and -independent transcription of the gene cluster at 21q22, which encompasses the previously identified COBRA1-regulated TFF1 (pS2) locus. Thus, COBRA1 plays a critical role in the regulation of clustered gene expression at preferred chromosomal domains in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 8
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aiyar SE, Sun J-L, Blair AL, Moskaluk CA, Lv Y, Ye Q-N et al. (2004). Attenuation of estrogen receptor alpha-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor. Genes Dev 18: 2134–2146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CL, Brown CJ . (1999). Polymorphic X-chromosome inactivation of the human TIMP1 gene. Am J Hum Genet 65: 699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CL, Brown CJ . (2002). Variability of X chromosome inactivation: effect on levels of TIMP1 RNA and role of DNA methylation. Hum Genet 110: 271–278.

    CAS  PubMed  Google Scholar 

  • Balleine RL, Clarke CL . (1999). Expression of the oestrogen responsive protein pS2 in human breast cancer. Histol Histopathol 14: 571–578.

    CAS  PubMed  Google Scholar 

  • Banerjee S, Saxena N, Sengupta K, Tawfik O, Mayo MS, Banerjee SK . (2003). WISP-2 gene in human breast cancer: estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia 5: 63–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blais Y, Sugimoto K, Carriere MC, Haagensen DE, Labrie F, Simard J . (1995). Interleukin-6 inhibits the potent stimulatory action of androgens, glucocorticoids and interleukin-1 alpha on apolipoprotein D and GCDFP-15 expression in human breast cancer cells. Int J Cancer 62: 732–737.

    CAS  PubMed  Google Scholar 

  • Bodey B . (2002). Cancer-testis antigens: promising targets for antigen directed antineoplastic immunotherapy. Expert Opin Biol Ther 2: 577–584.

    CAS  PubMed  Google Scholar 

  • Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM et al. (2004). CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 10: 6606–6611.

    CAS  PubMed  Google Scholar 

  • Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P et al. (2001). The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291: 1289–1292.

    CAS  PubMed  Google Scholar 

  • Carroll JS, Liu S, Brodsky AS, Li W, Meyer CA, Szary AJ et al. (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122: 33–43.

    CAS  PubMed  Google Scholar 

  • Carsol JL, Gingras S, Simard J . (2002). Synergistic action of prolactin (PRL) and androgen on PRL-inducible protein gene expression in human breast cancer cells: a unique model for functional cooperation between signal transducer and activator of transcription-5 and androgen receptor. Mol Endocrinol 16: 1696–1710.

    CAS  PubMed  Google Scholar 

  • Chen L, O’Bryan JP, Smith HS, Liu E . (1990). Overexpression of matrix Gla protein mRNA in malignant human breast cells: isolation by differential cDNA hybridization. Oncogene 5: 1391–1395.

    CAS  PubMed  Google Scholar 

  • Chen ME, Lin SH, Chung LW, Sikes RA . (1998). Isolation and characterization of PAGE-1 and GAGE-7. New genes expressed in the LNCaP prostate cancer progression model that share homology with melanoma-associated antigens. J Biol Chem 273: 17618–17625.

    CAS  PubMed  Google Scholar 

  • Chinery R, Williamson J, Poulsom R . (1995). The gene encoding human intestinal trefoil factor (TFF3) is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family. Genomics 32: 281–284.

    Google Scholar 

  • Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2: 65–73.

    CAS  PubMed  Google Scholar 

  • Clark JW, Snell L, Shiu RP, Orr FW, Maitre N, Vary CP et al. (1999). The potential role for prolactin-inducible protein (PIP) as a marker of human breast cancer micrometastasis. Br J Cancer 81: 1002–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Backer O, Arden KC, Boretti M, Vantomme V, De Smet C, Czekay S et al. (1999). Characterization of the GAGE genes that are expressed in various human cancers and normal testis. Cancer Res 59: 3157–3165.

    CAS  PubMed  Google Scholar 

  • Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C et al. (2005). Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115: 1765–1776.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Duan Y, Lamendola DE, Yusuf RZ, Naeem R, Penson RT et al. (2003). Overexpression of MAGE/GAGE in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res 9: 2778–2785.

    CAS  PubMed  Google Scholar 

  • Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA et al. (2001). Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 20: 77–87.

    CAS  PubMed  Google Scholar 

  • Fata JE, Werb Z, Bissell MJ . (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6: 1–11.

    CAS  PubMed  Google Scholar 

  • Gallagher PG, Bao Y, Serrano SMT, Kamiguti AS, Theakston RDG, Fox JW . (2003). Use of microarrays for investigating the subtoxic effects of snake venoms: insights into venom-induced apoptosis in human umbilical vein endothelial cells. Toxicon 41: 429–440.

    CAS  PubMed  Google Scholar 

  • Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A et al. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111: 393–405.

    CAS  PubMed  Google Scholar 

  • Gonzalez MA, Pinder SE, Callagy G, Vowler SL, Morris LS, Bird K et al. (2003). Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J Clin Oncol 21: 4306–4313.

    CAS  PubMed  Google Scholar 

  • Gott P, Beck S, Machado JC, Carneiro F, Schmitt H, Blin N . (1996). Human trefoil peptides: genomic structure in 21q22.3 and coordinated expression. Eu J Human Gen 4: 308–315.

    CAS  Google Scholar 

  • Hahnel E, Harvey J, Robbins P, Sterrett G, Hahnel R . (1994). Hormone-regulated genes (pS2, PIP, FAS) in breast cancer and nontumoral mammary tissue. Pathobiology 62: 82–89.

    CAS  PubMed  Google Scholar 

  • Hirota S, Ito A, Nagoshi J, Takeda M, Kurata A, Takatsuka Y et al. (1995). Expression of bone matrix protein messenger ribonucleic acids in human breast cancers. Possible involvement of osteopontin in development of calcifying foci. Lab Invest 72: 64–69.

    CAS  PubMed  Google Scholar 

  • Hoevel T, Macek R, Mundigl O, Swisshelm K, Kubbies M . (2002). Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J Cell Physiol 191: 60–68.

    PubMed  Google Scholar 

  • Hurst LD, Pal C, Lercher MJ . (2004). The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5: 299–310.

    CAS  PubMed  Google Scholar 

  • Jazaeri AA, Chandramouli GVR, Aprelikova O, Nuber UA, Sotiriou C, Liu ET et al. (2004). BRCA1-mediated repression of select X chromosome genes. J Translational Med 2: 32–39.

    Google Scholar 

  • Jazaeri AA, Yee CJ, Sotiriou C, Brantley KR, Boyd J, Liu ET . (2002). Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst 94: 990–1000.

    CAS  PubMed  Google Scholar 

  • Koon N, Zaika A, Moskaluk CA, Frierson HF, Knuutila S, Powell SM et al. (2004). Clustering of molecular alterations in gastroesophageal carcinomas. Neoplasia 6: 143–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer F, White K, Kubbies M, Swisshelm K, Weber BH . (2000). Genomic organisation of claudin 1 and its assessment in hereditary and sporadic breast cancer. Hum Genet 107: 249–256.

    CAS  PubMed  Google Scholar 

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811–816.

    CAS  PubMed  Google Scholar 

  • Lercher MJ, Urrutia AO, Hurst LD . (2002). Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet 31: 180–183.

    CAS  PubMed  Google Scholar 

  • Lopez-Boado YS, Tolivia J, Lopez-Otin C . (1994). Apolipoprotein D gene induction by retinoic acid is concomitant with growth arrest and cell differentiation in human breast cancer cells. J Biol Chem 269: 26871–26878.

    CAS  PubMed  Google Scholar 

  • Mashino K, Sadanaga N, Tanaka F, Yamaguchi H, Nagashima H, Inoue H et al. (2001). Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas. Br J Cancer 85: 713–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  • May FEB, Westley BR . (1997). Trefoil proteins: their role in normal and malignant cells. J Path 183: 4–7.

    CAS  PubMed  Google Scholar 

  • McChesney PA, Aiyar SE, Lee OJ, Zaika A, Moskaluk C, Li R et al. (2006). Cofactor of BRCA1: a novel transcription factor regulator in upper gastrointestinal adenocarcinomas. Cancer Res 66: 1346–1353.

    CAS  PubMed  Google Scholar 

  • Mikhitarian K, Gillanders WE, Almeida JS, Hebert Martin R, Varela JC, Metcalf JS et al. (2005). An innovative microarray strategy identities informative molecular markers for the detection of micrometastatic breast cancer. Clin Cancer Res 11: 3697–3704.

    CAS  PubMed  Google Scholar 

  • Moggs JG, Murphy TC, Lim FL, Moore DJ, Stuckey R, Antrobus K et al. (2005). Anti-proliferative effect of estrogen in breast cancer cells that re-express ERa is mediated by aberrant regulation of cell cycle genes. J Mol Endocrinol 34: 535–551.

    CAS  PubMed  Google Scholar 

  • Morin PJ . (2005). Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65: 9603–9606.

    CAS  PubMed  Google Scholar 

  • Nakopoulou L, Giannopoulou I, Lazaris AC, Alexandrou P, Tsirmpa I, Markaki S et al. (2003). The favorable prognostic impact of tissue inhibitor of matrix metalloproteinases-1 protein overexpression in breast cancer cells. APMIS 111: 1027–1036.

    CAS  PubMed  Google Scholar 

  • Narita T, Yamaguchi Y, Yano K, Sugimoto S, Chanarat S, Wada T et al. (2003). Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol Cell Biol 23: 1863–1873.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagani A, Sapino A, Eusebi V, Bergnolo P, Bussolati G . (1994). PIP/GCDFP-15 gene expression and apocrine differentiation in carcinomas of the breast. Virchows Arch 425: 459–465.

    CAS  PubMed  Google Scholar 

  • Palangat M, Renner DB, Price DH, Landick R . (2005). A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc Natl Acad Sci USA 102: 15036–15041.

    CAS  PubMed  Google Scholar 

  • Poulsom R, Hanby AM, Lalani EN, Hauser F, Hoffmann W, Stamp GW . (1997). Intestinal trefoil factor (TFF 3) and pS2 (TFF 1), but not spasmolytic polypeptide (TFF 2) mRNAs are co-expressed in normal, hyperplastic, and neoplastic human breast epithelium. J Pathol 183: 30–38.

    CAS  PubMed  Google Scholar 

  • Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L et al. (2000). Apolipoprotein D. Biochim Biophys Acta 1482: 185–198.

    CAS  PubMed  Google Scholar 

  • Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9: 121–132.

    CAS  PubMed  Google Scholar 

  • Schmitt H, Wundrack I, Beck S, Gott P, Welter C, Shizuya H et al. (1996). A third P-domain polypeptide gene (TFF3), human intestinal trefoil factor, maps to 21q22.3. Cytogenet Cell Genet 72: 299–302.

    CAS  PubMed  Google Scholar 

  • Sheikh MS, Shao Z-M, Chen J-C, Fontana JA . (1993). Differential regulation of matrix Gla protein (MGP) gene expression by retinoic acid and estrogen in human breast carcinoma cells. Mol Cell Endocinol 92: 153–160.

    CAS  Google Scholar 

  • Shetty A, Loddo M, Fanshawe T, Prevost AT, Sainsbury R, Williams GH et al. (2005). DNA replication licensing and cell cycle kinetics of normal and neoplastic breast. Br J Cancer 93: 1295–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer GA, Lloyd AT, Huminiecki LB, Wolfe KH . (2005). Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol Biol Evol 22: 767–775.

    CAS  PubMed  Google Scholar 

  • Smid M, Wang Y, Klijn JG, Sieuwerts AM, Zhang Y, Atkins D et al. (2006). Genes associated with breast cancer metastatic to bone. J Clin Oncol 24: 2261–2267.

    CAS  PubMed  Google Scholar 

  • Spellman PT, Rubin GM . (2002). Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1: 5.

    PubMed  PubMed Central  Google Scholar 

  • Tian W, Osawa M, Horiuchi H, Tomita Y . (2004). Expression of the prolactin-inducible protein (PIP/GCDFP15) gene in benign epithelium and adenocarcinoma of the prostate. Cancer Science 95: 491–495.

    CAS  PubMed  Google Scholar 

  • Toi M, Ishigaki S, Tominaga T . (1998). Metalloproteinases and tissue inhibitors of metalloproteinases. Breast Cancer Res Treat 52: 113–124.

    CAS  PubMed  Google Scholar 

  • Tokes AM, Kulka J, Paku S . (2005). Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 7: R296–R305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasetto C, Rockel N, Mattei MG, Fujita R, Rio MC . (1992). The gene encoding the human spasmolytic protein (SML1/hSP) is in 21q22.3, physically linked to the homologous breast cancer gene BCEI/pS2. Genomics 13: 1328–1330.

    CAS  PubMed  Google Scholar 

  • Vestergaard EM, Borre M, Poulsen SS, Nexo E, Torring N . (2006). Plasma levels of trefoil factors are increased in patients with advanced prostate cancer. Clin Cancer Res 12: 807–812.

    CAS  PubMed  Google Scholar 

  • Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose H et al. (1998). DSIF, a novel transcription elongation factor that regulates RNA polymeerase II processitivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12: 343–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Lee C, Fan R, Smith MJ, Yamaguchi Y, Handa H et al. (2005a). Molecular characterization of Drosophila NELF. Nucleic Acids Res 33: 1269–1279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-H, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J, Enerly E et al. (2003). NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17: 1402–1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Ghosh S, Nishi Y, Yanase T, Nawata H, Hu Y-F . (2005b). The orphan nuclear receptors NURR1 and NGFI-B modulate aromatase gene expression in ovarian granulosa cells: a possible mechanism for repression of aromatase expression upon luteinizing hormone surge. Endocrinology 146: 237–246.

    CAS  PubMed  Google Scholar 

  • Würtz SØ, Schrohl A-S, Sørensen NM, Lademann U, Christensen IJ, Mouridsen H et al. (2005). Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr Relat Cancer 12: 215–227.

    PubMed  Google Scholar 

  • Xu XQ, Emerald BS, Goh EL, Kannan N, Miller LD, Gluckman PD et al. (2005). Gene expression profiling to identify oncogenic determinants of autocrine human growth hormone in human mammary carcinoma. J Biol Chem 280: 23987–24003.

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S et al. (1999). NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97: 41–51.

    CAS  PubMed  Google Scholar 

  • Ye Q, Hu Y-F, Zhong H, Nye AC, Belmont AS, Li R . (2001). BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol 155: 911–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Annab LA, Afshari CA, Lee W-H, Boyer TG . (2001). BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci USA 98: 9587–9592.

    CAS  PubMed  Google Scholar 

  • Zhong H, Zhu J, Zhang H, Ding L, Sun Y, Huang C et al. (2004). COBRA1 inhibits AP-1 transcriptional activity in transfected cells. Biochem Biophys Res Commun 325: 568–573.

    CAS  PubMed  Google Scholar 

  • Zhou Y, Luoh SM, Zhang Y, Watanabe C, Wu TD, Ostland M et al. (2003). Genome-wide identification of chromosomal regions of increased tumor expression by transcriptome analysis. Cancer Res 63: 5781–5784.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Asma Amleh and Jianlong Sun for critical reading of the paper, and Yongde Bao for the microarray analysis. The work was supported by a postdoctoral fellowship from DOD. Breast Cancer Research Program to SEA (BC031441), a Cancer Training Grant to ALB and an NIH grant to RL (DK064604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Li.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiyar, S., Blair, A., Hopkinson, D. et al. Regulation of clustered gene expression by cofactor of BRCA1 (COBRA1) in breast cancer cells. Oncogene 26, 2543–2553 (2007). https://doi.org/10.1038/sj.onc.1210047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210047

Keywords

This article is cited by

Search

Quick links