Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The activation of TC10, a Rho small GTPase, contributes to v-Rel-mediated transformation

Abstract

v-Rel is the oncogenic member of the Rel/NF-κB family of transcription factors and transforms hematopoietic cells and fibroblasts. Differential display was employed to identify target genes that exhibit altered expression in v-Rel transformed cells. One of the cDNAs identified encodes the chicken ortholog of TC10, a member of the Rho small GTPase family. The expression of TC10 was increased in v-Rel-transformed chicken embryonic fibroblasts (CEFs) 3 to 6-fold relative to control cells at both the RNA and protein levels. An elevated level of active, GTP-bound TC10 was also detected in v-Rel-transformed cells relative to control cells. Expression of a dominant-negative TC10 mutant (TC10T32N) decreased the colony formation potential of v-Rel-transformed cells. Furthermore, overexpression of wild-type TC10 or a gain-of-function mutant (TC10Q76L) greatly enhanced the ability of v-Rel transformed CEFs to form colonies in soft agar. In addition to enhance the transformation potential of v-Rel, the overexpression of wild-type TC10 or the gain-of-function mutant alone enhanced the saturation density of CEFs and was sufficient for their anchorage-independent growth in vitro. These results indicate that elevated TC10 activity contributes to v-Rel-mediated transformation of CEFs and demonstrate for the first time that a Rho factor alone is capable of inducing the in vitro transformation of primary cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Abraham MT, Kuriakose MA, Sacks PG . (2001). Motility-related proteins as markers for head and neck aquamous cell cancer. Laryngoscope 111: 1285–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama Y, Kato S . (1974). Two cell lines from lymphomas of Marek's disease. Biken J 17: 105–116.

    CAS  PubMed  Google Scholar 

  • Aznar S, Lacal JC . (2001). Rho signals to cell growth and apoptosis. Cancer Lett 165: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Baba TW, Giroir BP, Humphries EH . (1985). Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology 144: 139–151.

    Article  CAS  PubMed  Google Scholar 

  • Benard V, Bohl BP, Bokoch GM . (1999). Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274: 13198–13204.

    Article  CAS  PubMed  Google Scholar 

  • Benard V, Bokoch GM . (2002). Assay of Cdc42, Rac and Rho GTPase activation by affinity methods. Methods Enzymol 345: 349–359.

    Article  PubMed  Google Scholar 

  • Bernards A, Settleman J . (2005). GAPs in growth factor signalling. Growth Factors 23: 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Boettner B, Van Aelst L . (2002). The role of Rho GTPases in disease development. Gene 286: 155–174.

    Article  CAS  PubMed  Google Scholar 

  • Bose Jr HR . (1992). The Rel family: models for transcriptional regulation and oncogenic transformation. Biochim Biophys Acta 1114: 1–17.

    CAS  PubMed  Google Scholar 

  • Chang L, Adams RD, Saltiel AR . (2002). The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proc Natl Acad Sci 99: 12835–12840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Wang H, Guggino WB . (2005). Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10. J Biol Chem 280: 3731–3739.

    Article  CAS  PubMed  Google Scholar 

  • Chiang S-H, Baumann CA, Kanzaki M, Thurmond DC, Watson R, Neudauer CL et al. (2001). Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410: 944–948.

    Article  CAS  PubMed  Google Scholar 

  • Chiang S-H, Hou JC, Hwang J, Pessin J, Saltiel AR . (2002). Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport. J Biol Chem 277: 13067–13073.

    Article  CAS  PubMed  Google Scholar 

  • del Peso L, Hernandez-Alcoceba RNE, Carnero A, Esteve P, Paje C, Lacal JC . (1997). Rho proteins induce metastatic properties in vivo. Oncogene 15: 3047–3057.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty JP, Temin HM . (1986). High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol Cell Biol 6: 4387–4395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty JP, Temin HM . (1988). Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J Virol 62: 2817–2822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dransart E, Olofsson B, Cherfils J . (2005). RhoGDIs revisited: novel roles in Rho regulation. Traffic 6: 957–966.

    Article  CAS  PubMed  Google Scholar 

  • Drivas GT, Shih A, Coutavas E, Rush MG, D'Eustachio P . (1990). Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10: 1793–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis S, Mellor H . (2000). Regulation of endocytic traffic by Rho family GTPases. Trends Cell Biol 10: 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Evers EE, Zondag GCM, Malliri A, Price LS, ten Klooster J-P, van der Kammen RA et al. (2000). Rho family proteins in cell adhesion and cell migration. Eur J Cancer 36: 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  • Frame MC, Brunton VG . (2002). Advances in Rho-dependent actin regulation and oncogenic transformation. Curr Opin Gen Dev 12: 36–43.

    Article  CAS  Google Scholar 

  • Franklin RB, Kang C-Y, Wan K M-M, Bose Jr HR . (1977). Transformation of chick embryo fibroblasts by reticuloendotheliosis virus. Virology 83: 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Frykberg L, Graf T, Vennstrom B . (1987). The transforming activity of the chicken c-myc gene can be potentiated by mutations. Oncogene 1: 415–422.

    CAS  PubMed  Google Scholar 

  • Gilmore TD . (1999). Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene 18: 6925–6937.

    Article  CAS  PubMed  Google Scholar 

  • Hall A . (1998). Rho GTPases and the actin cytoskeleton. Science 279: 509–514.

    Article  CAS  PubMed  Google Scholar 

  • Hrdlicková R, Nehyba J, Bose Jr HR . (1995). Mutations in the DNA-binding and dimerization domains of v-Rel are responsible for altered kB DNA-binding complexes in transformed cells. J Virol 69: 3369–3380.

    PubMed  PubMed Central  Google Scholar 

  • Hrdlicková R, Nehyba J, Bose Jr HR . (1999). Reticuloendotheliosis Viruses (Retroviridae). In: Granoff A, Webster RG (eds). Encyclopedia of Virology vol. 3. Academic Press: London, pp 1496–1503.

    Chapter  Google Scholar 

  • Hrdlicková R, Nehyba J, Bose Jr HR . (2001). Interferon regulatory factor 4 contributes to transformation of v-Rel-expressing fibroblasts. Mol Cell Biol 21: 6369–6386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrdlicková R, Nehyba J, Humphries EH . (1994a). In vivo evolution of c-rel oncogenic potential. J Virol 68: 2371–2382.

    PubMed  PubMed Central  Google Scholar 

  • Hrdlicková R, Nehyba J, Humphries EH . (1994b). v-rel induces expression of three avian immunoregulatory surface receptors more efficiently than c-rel. J Virol 68: 308–319.

    PubMed  PubMed Central  Google Scholar 

  • Hrdlicková R, Nehyba J, Liss AS, Bose Jr HR . (2006). Mechanism of telomerase activation by v-Rel and its contribution to transformation. J Virol 80: 281–295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iida S, Rao PH, Butler M, Corradini P, Boccadoro M, Klein B et al. (1997). Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 17: 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W et al. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZY, Chawla A, Bose A, Way M, Czech MP . (2001). A PI 3-kinase-independent insulin signaling pathway to N-WASP/Arp2-3/F-actin required for GLUT4 glucose transporter recycling. J Biol Chem 277: 509–515.

    Article  PubMed  CAS  Google Scholar 

  • Joberty G, Perlungher RR, Macara IG . (1999). The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol Cell Biol 19: 6585–6597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki M, Pessin J . (2001). Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 276: 42436–42444.

    Article  CAS  PubMed  Google Scholar 

  • Kato JY, Takeya T, Grandori C, Iba H, Levy JB, Hanafusa H . (1986). Amino acid substitutions sufficient to convert the nontransforming p60c-src protein to a transforming protein. Mol Cell Biol 6: 4155–4160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keely PJ . (2001). Rho GTPases as early markers for tumour progression. Lancet 358: 1744–1745.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M . (1987). An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15: 8125–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kralova J, Liss AS, Bargmann W, Bose Jr HR . (1998). AP-1 factors play an important role in transformation induced by the v-rel oncogene. Mol Cell Biol 18: 2997–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kralova J, Schatzle JD, Liss AS, Bargmann W, Bose Jr HR . (1994). Transformation of avian fibroblasts overexpressing the c-rel proto-oncogene and a variant of c-rel lacking 40 C-terminal amino acids. J Virol 68: 2073–2083.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay DJG, Hall A . (1998). Rho GTPases. J Biol Chem 273: 20685–20688.

    Article  CAS  PubMed  Google Scholar 

  • Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, Philips MR . (2001). Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152: 111–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscovici C, Zeller N, Moscovici MG . (1982). Continuous lines of AMV-transformed nonproducer cells: growth and oncogenic potential in the chick embryo. In: Revoltella RF, Basilico C, Gallo RC, Pontieri GM, Rovera G, Subak-Sharpe JH (eds). Expression of Differentiated Functions in Cancer Cells. Raven Press: New York, pp 435–449.

    Google Scholar 

  • Moscow JA, He R, Gnarra JR, Knutsen T, Weng Y, Zhao WP et al. (1994). Examination of human tumors for rhoA mutations. Oncogene 9: 189–194.

    CAS  PubMed  Google Scholar 

  • Murphy GA, Jillian SA, Michaelson D, Phillips MR, D'Eustachio P, Rush MG . (2001). Signaling mediated by the closely related mammalian Rho family GTPases TC10 and Cdc42 suggests distinct functional pathways. Cell Grow Diff 12: 157–167.

    CAS  Google Scholar 

  • Murphy GA, Solski PA, Jillian SA, de la Ossa PP, D'Eustachio P, Der CJ et al. (1999). Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene 18: 3831–3845.

    Article  CAS  PubMed  Google Scholar 

  • Nass SJ, Dickson RB . (1997). Defining a role for c-Myc in breast tumorigenesis. Breast Cancer Res Treat 44: 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Nazerian K, Stephens EA, Sharma JM, Lee LM, Gailitis M, Witter RI . (1977). A nonproducer T lymphoblastoid cell line from Marek's disease transplantable tumor (JMV). Avian Dis 21: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Nehyba J, Hrdlickova R, Bose Jr HR . (1997). Differences in κB DNA-binding properties of v-Rel and c-Rel are the result of oncogenic mutations in three distinct functional regions of the Rel protein. Oncogene 14: 2881–2897.

    Article  CAS  PubMed  Google Scholar 

  • Nehyba J, Hrdlickova R, Burnside J, Bose Jr HR . (2002). Interferon regulatory factor 10, a novel family member, has a unique role in antiviral defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 22: 3945–3957.

    Article  CAS  Google Scholar 

  • Neudauer CL, Joberty G, Tatsis N, Macara IG . (1998). Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr Biol 8: 1151–1160.

    Article  CAS  PubMed  Google Scholar 

  • Nobes CD, Hall A . (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. J Cell Biol 144: 1235–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno H, Suzuki T, Yoshida T, Hashimoto Y, Curran T, Iba H . (1991). Inhibition of jun transformation by a mutated fos gene: design of an anti-oncogene. Oncogene 6: 1491–1497.

    CAS  PubMed  Google Scholar 

  • Osada S-I, Izawa M, Koyama T, Hirai S-I, Ohno S . (1997). A domain containing the Cdc42/Rac interactive binding (CRIB) region of p65PAK inhibits transcriptional activation and cell transformation mediated by the Ras-Rac pathway. FEBS Lett 404: 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Pahl HL . (1999). Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18: 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND . (2000). The Rel/NF-κB family: friend and foe. Trends Biochem Sci 25: 434–440.

    Article  CAS  PubMed  Google Scholar 

  • Perona R, Esteve P, Jimenez B, Ballestero RP, Ramon y Cajal S, Lacal JC . (1993). Tumorigenic activity of rho genes from Aplysia californica. Oncogene 8: 1285–1292.

    CAS  PubMed  Google Scholar 

  • Petrenko O, Ischenco I, Enrietto PJ . (1997). Characterization of changes in gene expression associated with malignant transformation by the NF-κB family member, v-Rel. Oncogene 15: 1671–1680.

    Article  CAS  PubMed  Google Scholar 

  • Prendergast GC, Khosravi-Far R, Solski PA, Lebowitz PF, Der CJ . (1995). Critical role of RhoB in cell transformation by oncogenic Ras. Oncogene 10: 2289–2296.

    CAS  PubMed  Google Scholar 

  • Qiu R-G, Abo A, McCormick F, Symons M . (1997). Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 17: 3449–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu R-G, Chen J, McCoormck F, Symons M . (1995). A role for Rho in Ras transformation. Proc Natl Acad Sci 92: 11781–11785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao A, Kline K, Sanders BG . (1990). Immune abnormalities in avian erythroblastosis virus-infected chickens. Cancer Res 50: 4764–4770.

    CAS  PubMed  Google Scholar 

  • Rayet B, Gelinas C . (1999). Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18: 6938–6947.

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ . (1997). The GTP-binding protein Rho. Int J Biochem Cell Biol 29: 1225–1229.

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ . (2001a). Rho GTPases and cell migration. J Cell Sci 114: 2713–2722.

    CAS  PubMed  Google Scholar 

  • Ridley AJ . (2001b). Rho proteins: linking signaling with membrane trafficking. Traffic 2: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Romero P, Humphries EH . (1995). A mutant v-rel with increased ability to transform B lymphocytes. J Virol 69: 301–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossman KL, Der CJ, Sondek J . (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6: 167–180.

    Article  CAS  PubMed  Google Scholar 

  • Sachdev S, Hannink M . (1998). Loss of Ikappa balpha-mediated control over nuclear import and DNA binding enables oncogenic activation of c-Rel. Mol Cell Biol 18: 5445–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzle JD, Kralova J, Bose Jr HR . (1995). Avian IκBα is transcriptionally induced by c-Rel and v-Rel with different kinetics. J Virol 69: 5383–5390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ . (2004). Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 23: 9369–9380.

    Article  CAS  PubMed  Google Scholar 

  • Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M et al. (1998). Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancrease. Br J Cancer 77: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons M . (1996). Rho family GTPases: the cytoskeleton and beyond. Trends Biochem Sci 21: 178–181.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Tachibana T, Yamashita T, Che YH, Yoneda Y, Ochi T et al. (2000). The small GTP-binding protein TC10 promotes nerve elongation in neuronal cells, and its expression is induced during nerve regeneration in rats. J Neurosci 20: 4138–4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapon N, Hall A . (1997). Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9: 86–92.

    Article  CAS  PubMed  Google Scholar 

  • van Golen KL, Wu Z-F, Qiao XT, Bao LW, Merajver SD . (2000). RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60: 5832–5838.

    CAS  PubMed  Google Scholar 

  • van Leeuwen FN, van der Kammen RA, Habets GG, Collard JG . (1995). Oncogenic activity of Tiam1 and Rac1 in NIH3T3 cells. Oncogene 11: 2215–2221.

    CAS  PubMed  Google Scholar 

  • Warburg O . (1930). The Metabolism of Tumors. Constable Press: London.

    Google Scholar 

  • Watanabe S, Temin HM . (1983). Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol Cell Biol 3: 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RT, Shigematsu S, Chiang S-H, Mora S, Kanzaki M, Macara IG et al. (2001). Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol 154: 829–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwick JK, Lee RJ, Lambert QT, Symons M, Pestell RG, Der CJ et al. (1997). Transforming potential of Dbl family proteins correlates with transcription from the Cyclin D1 promoter but not with activation of Jun NH2-terminal kinase, p38/Mpk2, serum response factor, or c-Jun. J Biol Chem 273: 16739–16747.

    Article  Google Scholar 

  • Whitehead IP, Abe K, Gorski JL, Der CJ . (1998). CDC42 and FGD1 cause distict signaling and transforming activities. Mol Cell Biol 18: 4689–4697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You M-J, Bose Jr HR . (1998). Identification of v-Rel oncogene-induced inhibitor of apoptosis by differential display. Methods 16: 373–385.

    Article  CAS  PubMed  Google Scholar 

  • You M-J, Ku PT, Hrdlickova R, Bose Jr HR . (1997). ch-IAP1, a member of the inhibitor-of-apoptosis family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol Cell Biol 17: 7328–7341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Slaughter C, Humphries EH . (1995). v-rel induces ectopic expression of an adhesion molecule, DM-GRASP, during B-lymphoma development. Mol Cell Biol 15: 1806–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Bose Jr HR . (1989). Acquisition of new proviral copies in avian lymphoid cells transformed by reticuloendotheliosis virus. J Virol 63: 1107–1115.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL, Der CJ . (1998). Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17: 1415–1438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Public Health Service grants CA33192 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H R Bose Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, S., Liss, A., You, M. et al. The activation of TC10, a Rho small GTPase, contributes to v-Rel-mediated transformation. Oncogene 26, 2318–2329 (2007). https://doi.org/10.1038/sj.onc.1210023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210023

Keywords

This article is cited by

Search

Quick links