Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcription regulation by mutant p53

Abstract

In addition to the loss of wild-type p53 activity, a high percentage of tumor cells accumulate mutant p53 protein isoforms. Whereas the hallmark of the wild-type p53 is its tumor suppressor activities, tumor-associated mutant p53 proteins acquire novel functions enabling them to promote a large spectrum of cancer phenotypes. During the last years, it became clear that tumor-associated mutant p53 proteins are not only distinct from the wild-type p53, but they also represent a heterogeneous population of proteins with a variety of structure–function features. One of the major mechanisms underlying mutant p53 gain of function is the ability to regulate gene expression. Although a large number of specific target genes were identified, the molecular basis for this regulation is not fully elucidated. This review describes the present knowledge about the transcriptional activities of mutant p53 and the mechanisms that might underlie its target gene specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221.

    Article  CAS  PubMed  Google Scholar 

  • Bargonetti J, Chicas A, White D, Prives C . (1997). p53 represses Sp1 DNA binding and HIV-LTR directed transcription. Cell Mol Biol (Noisy-le-grand) 43: 935–949.

    CAS  Google Scholar 

  • Ben David Y, Prideaux VR, Chow V, Benchimol S, Bernstein A . (1988). Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 3: 179–185.

    CAS  PubMed  Google Scholar 

  • Blandino G, Levine AJ, Oren M . (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18: 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A . (2006). Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25: 304–309.

    Article  CAS  PubMed  Google Scholar 

  • Buganim Y, Kalo E, Brosh R, Besserglick H, Nachmany I, Rais Y et al. (2006). Mutant p53 protects cells from 12-O-tetradecanoylphorbol-13-acetate-induced death by attenuating activating transcription factor 3 induction. Cancer Res 66: 10750–10759.

    Article  CAS  PubMed  Google Scholar 

  • Bullock AN, Fersht AR . (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1: 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Simmons DT, Martin MA, Mora PT . (1979). Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells. J Virol 31: 463–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chicas A, Molina P, Bargonetti J . (2000). Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem Biophys Res Commun 279: 383–390.

    Article  CAS  PubMed  Google Scholar 

  • Chin KV, Ueda K, Pastan I, Gottesman MM . (1992). Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255: 459–462.

    Article  CAS  PubMed  Google Scholar 

  • Chow V, Ben-David Y, Bernstein A, Benchimol S, Mowat M . (1987). Multistage friend erythroleukemia: independent origin of tumor clones with normal or rearranged p53 cellular oncogenes. J Virol 61: 2777–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb D, Scian M, Roth KE, Li W, Keiger J, Chakraborti AS et al. (2002). Hetero-oligomerization does not compromise ‘gain of function’ of tumor-derived p53 mutants. Oncogene 21: 176–189.

    Article  CAS  PubMed  Google Scholar 

  • DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ . (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76: 2420–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M et al. (1993). Gain of function mutations in p53. Nat Genet 4: 42–46.

    Article  CAS  PubMed  Google Scholar 

  • El-Hizawi S, Lagowski JP, Kulesz-Martin M, Albor A . (2002). Induction of gene amplification as a gain-of-function phenotype of mutant p53 proteins. Cancer Res 62: 3264–3270.

    CAS  PubMed  Google Scholar 

  • Eliyahu D, Goldfinger N, Pinhasi-Kimhi O, Shaulsky G, Skurnik Y, Arai N et al. (1988). Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3: 313–321.

    CAS  PubMed  Google Scholar 

  • Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M . (1989). Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86: 8763–8767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliyahu D, Michalovitz D, Oren M . (1985). Overproduction of p53 antigen makes established cells highly tumorigenic. Nature 316: 158–160.

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M . (1984). Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312: 646–649.

    Article  CAS  PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ . (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093.

    Article  CAS  PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ . (1988). Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8: 531–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP . (1998). Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18: 3735–3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohler T, Jager S, Warnecke G, Yasuda H, Kim E, Deppert W . (2005). Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res 33: 1087–1100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gualberto A, Aldape K, Kozakiewicz K, Tlsty TD . (1998). An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci USA 95: 5166–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gualberto A, Baldwin Jr AS . (1995). p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J Biol Chem 270: 19680–19683.

    Article  CAS  PubMed  Google Scholar 

  • Hinds P, Finlay C, Levine AJ . (1989). Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinds PW, Finlay CA, Frey AB, Levine AJ . (1987). Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol Cell Biol 7: 2863–2869.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao M, Low J, Dorn E, Ku D, Pattengale P, Yeargin J et al. (1994). Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am J Pathol 145: 702–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SP, Harris CC . (1998). Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58: 4023–4037.

    CAS  PubMed  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inga A, Storici F, Darden TA, Resnick MA . (2002). Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol Cell Biol 22: 8612–8625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WG . (2003). Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto KS, Mizuno T, Ito T, Tsuyama N, Kyoizumi S, Seyama T . (1996). Gain-of-function p53 mutations enhance alteration of the T-cell receptor following X-irradiation, independently of the cell cycle and cell survival. Cancer Res 56: 3862–3865.

    CAS  PubMed  Google Scholar 

  • Iwanaga Y, Jeang KT . (2002). Expression of mitotic spindle checkpoint protein hsMAD1 correlates with cellular proliferation and is activated by a gain-of-function p53 mutant. Cancer Res 62: 2618–2624.

    CAS  PubMed  Google Scholar 

  • Jenkins JR, Rudge K, Chumakov P, Currie GA . (1985). The cellular oncogene p53 can be activated by mutagenesis. Nature 317: 816–818.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JR, Rudge K, Currie GA . (1984). Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Ang HC, Fersht AR . (2006). From the cover: structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA 103: 15056–15061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR . (2005). Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem 280: 16030–16037.

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Deppert W . (2003). The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol 81: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Knaup KX, Roemer K . (2004). Cell type-specific regulation of calmodulin 2 expression by mutant p53. FEBS Lett 569: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Kress M, May E, Cassingena R, May P . (1979). Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31: 472–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DP, Crawford LV . (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Lanyi A, Deb D, Seymour RC, Ludes-Meyers JH, Subler MA, Deb S . (1998). ‘Gain of function’ phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Oncogene 16: 3169–3176.

    Article  CAS  PubMed  Google Scholar 

  • Lee YI, Lee S, Das GC, Park US, Park SM, Lee YI . (2000). Activation of the insulin-like growth factor II transcription by aflatoxin B1 induced p53 mutant 249 is caused by activation of transcription complexes; implications for a gain-of-function during the formation of hepatocellular carcinoma. Oncogene 19: 3717–3726.

    Article  CAS  PubMed  Google Scholar 

  • Li R, Sutphin PD, Schwartz D, Matas D, Almog N, Wolkowicz R et al. (1998). Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 16: 3269–3277.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen J, Elenbaas B, Levine AJ . (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8: 1235–1246.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Teresky AK, Levine AJ . (1995). Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 10: 2387–2390.

    CAS  PubMed  Google Scholar 

  • Linzer DI, Levine AJ . (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Linzer DI, Maltzman W, Levine AJ . (1979). The SV40 A gene product is required for the production of a 54, 000 MW cellular tumor antigen. Virology 98: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Loging WT, Reisman D . (1999). Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53. Cancer Epidemiol Biomarkers Prev 8: 1011–1016.

    CAS  PubMed  Google Scholar 

  • Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE et al. (1996). Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 16: 6009–6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matas D, Sigal A, Stambolsky P, Milyavsky M, Weisz L, Schwartz D et al. (2001). Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. Embo J 20: 4163–4172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer WE, Nelson D, DeLeo AB, Old LJ, Baserga R . (1982). Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3T3 cells. Proc Natl Acad Sci USA 79: 6309–6312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner J, Cook A . (1986). The cellular tumour antigen p53: evidence for transformation-related, immunological variants of p53. Virology 154: 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Milner J, Milner S . (1981). SV40–53K antigen: a possible role for 53K in normal cells. Virology 112: 785–788.

    Article  CAS  PubMed  Google Scholar 

  • Milner J . (1984). Different forms of p53 detected by monoclonal antibodies in non-dividing and dividing lymphocytes. Nature 310: 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Mizuarai S, Yamanaka K, Kotani H . (2006). Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. Cancer Res 66: 6319–6326.

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Erster S, Zaika A . (2001). p53, p63 and p73 – solos, alliances and feuds among family members. Biochim Biophys Acta 1552: 47–59.

    CAS  PubMed  Google Scholar 

  • Mowat M, Cheng A, Kimura N, Bernstein A, Benchimol S . (1985). Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature 314: 633–636.

    Article  CAS  PubMed  Google Scholar 

  • Muller BF, Paulsen D, Deppert W . (1996). Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene 12: 1941–1952.

    CAS  PubMed  Google Scholar 

  • Munroe DG, Rovinski B, Bernstein A, Benchimol S . (1988). Loss of a highly conserved domain on p53 as a result of gene deletion during friend virus-induced erythroleukemia. Oncogene 2: 621–624.

    CAS  PubMed  Google Scholar 

  • Murphy KL, Dennis AP, Rosen JM . (2000). A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J 14: 2291–2302.

    Article  CAS  PubMed  Google Scholar 

  • O'Farrell TJ, Ghosh P, Dobashi N, Sasaki CY, Longo DL . (2004). Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res 64: 8199–8207.

    Article  CAS  PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Oren M, Reich NC, Levine AJ . (1982). Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol Cell Biol 2: 443–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Haines DS . (2000). Identification of a tumor-derived p53 mutant with novel transactivating selectivity. Oncogene 19: 3095–3100.

    Article  CAS  PubMed  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V . (1984). Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312: 649–651.

    Article  CAS  PubMed  Google Scholar 

  • Pastorcic M, Das HK . (2000). Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene. J Biol Chem 275: 34938–34945.

    Article  CAS  PubMed  Google Scholar 

  • Peled A, Zipori D, Rotter V . (1996). Cooperation between p53-dependent and p53-independent apoptotic pathways in myeloid cells. Cancer Res 56: 2148–2156.

    CAS  PubMed  Google Scholar 

  • Preuss U, Kreutzfeld R, Scheidtmann KH . (2000). Tumor-derived p53 mutant C174Y is a gain-of-function mutant which activates the fos promoter and enhances colony formation. Int J Cancer 88: 162–171.

    Article  CAS  PubMed  Google Scholar 

  • Pugacheva EN, Ivanov AV, Kravchenko JE, Kopnin BP, Levine AJ, Chumakov PM . (2002). Novel gain of function activity of p53 mutants: activation of the dUTPase gene expression leading to resistance to 5-fluorouracil. Oncogene 21: 4595–4600.

    Article  CAS  PubMed  Google Scholar 

  • Reich NC, Levine AJ . (1984). Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308: 199–201.

    Article  CAS  PubMed  Google Scholar 

  • Rotter V, Witte ON, Coffman R, Baltimore D . (1980). Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. J Virol 36: 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al. (2001). Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276: 39359–39367.

    Article  CAS  PubMed  Google Scholar 

  • Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF et al. (2005). Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25: 10097–10110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A et al. (2004a). Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23: 4430–4443.

    Article  CAS  PubMed  Google Scholar 

  • Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF et al. (2004b). Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64: 7447–7454.

    Article  CAS  PubMed  Google Scholar 

  • Shaulsky G, Goldfinger N, Rotter V . (1991). Alterations in tumor development in vivo mediated by expression of wild type or mutant p53 proteins. Cancer Res 51: 5232–5237.

    CAS  PubMed  Google Scholar 

  • Shohat O, Greenberg M, Reisman D, Oren M, Rotter V . (1987). Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene 1: 277–283.

    CAS  PubMed  Google Scholar 

  • Sigal A, Matas D, Almog N, Goldfinger N, Rotter V . (2001). The C terminus of mutant p53 is necessary for its ability to interfere with growth arrest or apoptosis. Oncogene 20: 4891–4898.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Soussi T, Beroud C . (2001). Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1: 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Soussi T, Lozano G . (2005). p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331: 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Trkova M, Foretova L, Kodet R, Hedvicakova P, Sedlacek Z . (2003). A Li-Fraumeni syndrome family with retained heterozygosity for a germline TP53 mutation in two tumors. Cancer Genet Cytogenet 145: 60–64.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M et al. (2004). Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64: 8318–8327.

    Article  CAS  PubMed  Google Scholar 

  • Werner H, Karnieli E, Rauscher FJ, LeRoith D . (1996). Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA 93: 8318–8323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will K, Warnecke G, Wiesmuller L, Deppert W . (1998). Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc Natl Acad Sci USA 95: 13681–13686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf D, Harris N, Rotter V . (1984). Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38: 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Yakovleva T, Pramanik A, Kawasaki T, Tan-No K, Gileva I, Lindegren H et al. (2001). p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J Biol Chem 276: 15650–15658.

    Article  CAS  PubMed  Google Scholar 

  • Yap DB, Hsieh JK, Zhong S, Heath V, Gusterson B, Crook T et al. (2004). Ser392 phosphorylation regulates the oncogenic function of mutant p53. Cancer Res 64: 4749–4754.

    Article  CAS  PubMed  Google Scholar 

  • Zakut-Houri R, Bienz-Tadmor B, Givol D, Oren M . (1985). Human p53 cellular tumor antigen: cDNA sequence and expression in COS cells. EMBO J 4: 1251–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakut-Houri R, Oren M, Bienz B, Lavie V, Hazum S, Givol D . (1983). A single gene and a pseudogene for the cellular tumour antigen p53. Nature 306: 594–597.

    Article  CAS  PubMed  Google Scholar 

  • Zalcenstein A, Stambolsky P, Weisz L, Muller M, Wallach D, Goncharov TM et al. (2003). Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22: 5667–5676.

    Article  CAS  PubMed  Google Scholar 

  • Zalcenstein A, Weisz L, Stambolsky P, Bar J, Rotter V, Oren M . (2006). Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25: 359–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Center of Excellence grant from the Flight Attendant Medical Research Institute (FAMRI), EC FP6 Grant LSHC-CT-2004–503576, and Grant R37CA40099 from the National Cancer Institute and Yad Abraham Center for Cancer Diagnosis and Therapy. This publication reflects the authors' views and not necessarily those of the European Community. The EC is not liable for any use that may be made of the information contained herein. VR is the incumbent of the Norman and Helen Asher Professorial Chair Cancer Research at the Weizmann Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Rotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisz, L., Oren, M. & Rotter, V. Transcription regulation by mutant p53. Oncogene 26, 2202–2211 (2007). https://doi.org/10.1038/sj.onc.1210294

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210294

Keywords

This article is cited by

Search

Quick links