Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

WS5, a direct target of oncogenic transcription factor Myc, is related to human melanoma glycoprotein genes and has oncogenic potential

Abstract

We have isolated a gene (WS5) that is specifically expressed at the mRNA and protein level in avian fibroblasts transformed by the v-myc oncogene of avian acute leukemia virus MC29. In a conditional cell transformation system, WS5 gene expression was tightly correlated with v-myc activation. The WS5 gene contains 11 exons, encoding a 733-amino acid protein with a transmembrane region and a polycystic kidney disease (PKD) domain. Near the transcriptional start site, the WS5 promoter contains a cluster of four binding sites for the Myc–Max complex and a binding site for transcription factor C/EBPα. Electrophoretic mobility shift assays and chromatin immunoprecipitation showed that Myc, Max and C/EBPα bind specifically to these sites. Functional promoter analyses revealed that both the Myc-binding site cluster and the C/EBPα-binding site are essential for strong transcriptional activation, and that Myc and C/EBPα synergistically activate the WS5 promoter. Ectopic expression of WS5 led to cell transformation documented by anchorage-independent growth. The human melanoma antigen Pmel17, a type I transmembrane glycoprotein, is the mammalian protein with the highest amino acid sequence identity (38%) to WS5. The Pmel17 gene is regulated by the MITF protein, a bHLHZip transcription factor with DNA binding specificities similar to those of Myc/Max. WS5 is also related to human glycoprotein GPNMB expressed in metastatic melanoma cells and implicated in the progression of brain and liver tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  Google Scholar 

  • Bader AG, Hartl M, Bister K . (2000). Conditional cell transformation by doxycycline-controlled expression of the ASV17 v-jun allele. Virology 270: 98–110.

    Article  CAS  Google Scholar 

  • Ben-Porath I, Yanuka O, Benvenisty N . (1999). The Tmp gene, encoding a membrane protein, is a c-Myc target with a tumorigenic activity. Mol Cell Biol 19: 3529–3539.

    Article  CAS  Google Scholar 

  • Berson JF, Harper DC, Tenza D, Raposo G, Marks MS . (2001). Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 12: 3451–3464.

    Article  CAS  Google Scholar 

  • Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS . (2003). Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161: 521–533.

    Article  CAS  Google Scholar 

  • Bister K, Hayman MJ, Vogt PK . (1977). Defectiveness of avian myelocytomatosis virus MC29: isolation of long-term nonproducer cultures and analysis of virus-specific polypeptide synthesis. Virology 82: 431–448.

    Article  CAS  Google Scholar 

  • Bister K, Jansen HW . (1986). Oncogenes in retroviruses and cells: biochemistry and molecular genetics. Adv Cancer Res 47: 99–188.

    Article  CAS  Google Scholar 

  • Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN et al. (1993). Binding of Myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13: 5216–5224.

    Article  CAS  Google Scholar 

  • Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL et al. (1999). The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18: 297–305.

    Article  CAS  Google Scholar 

  • Clark LA, Wahl JM, Rees CA, Murphy KE . (2006). Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci USA 103: 1376–1381.

    Article  CAS  Google Scholar 

  • Dang CV . (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19: 1–11.

    Article  CAS  Google Scholar 

  • Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE . (2003). MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol 163: 333–343.

    Article  CAS  Google Scholar 

  • Eisenman RN . (2001). Deconstructing Myc. Genes Dev 15: 2023–2030.

    Article  CAS  Google Scholar 

  • Ferré-D'Amaré AR, Prendergast GC, Ziff EB, Burley SK . (1993). Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38–46.

    Article  Google Scholar 

  • Fieber W, Schneider ML, Matt T, Kräutler B, Konrat R, Bister K . (2001). Structure, function, and dynamics of the dimerization and DNA binding domain of oncogenic transcription factor v-Myc. J Mol Biol 307: 1395–1410.

    Article  CAS  Google Scholar 

  • Grabe N . (2002). AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol 2: S1–15.

    PubMed  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16: 653–699.

    Article  CAS  Google Scholar 

  • Hartl M, Bister K . (1995). Specific activation in jun-transformed avian fibroblasts of a gene (bkj) related to the avian β-keratin gene family. Proc Natl Acad Sci USA 92: 11731–11735.

    Article  CAS  Google Scholar 

  • Hartl M, Bister K . (1998). Structure and transcriptional regulation of BKJ, a novel AP-1 target gene activated during jun- or fos-induced fibroblast transformation. Oncogene 17: 2901–2913.

    Article  CAS  Google Scholar 

  • Hartl M, Karagiannidis AI, Bister K . (2006). Cooperative cell transformation by Myc/Mil(Raf) involves induction of AP-1 and activation of genes implicated in cell motility and metastasis. Oncogene 25: 4043–4055.

    Article  CAS  Google Scholar 

  • Hartl M, Matt T, Schüler W, Siemeister G, Kontaxis G, Kloiber K et al. (2003). Cell transformation by the v-myc oncogene abrogates c-Myc/Max-mediated suppression of a C/EBPβ-dependent lipocalin gene. J Mol Biol 333: 33–46.

    Article  CAS  Google Scholar 

  • Hartl M, Reiter F, Bader AG, Castellazzi M, Bister K . (2001). JAC, a direct target of oncogenic transcription factor Jun, is involved in cell transformation and tumorigenesis. Proc Natl Acad Sci USA 98: 13601–13606.

    Article  CAS  Google Scholar 

  • Heckman CA, Wheeler MA, Boxer LM . (2003). Regulation of Bcl-2 expression by C/EBP in t(14;18) lymphoma cells. Oncogene 22: 7891–7899.

    Article  Google Scholar 

  • Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ et al. (2000). Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97: 2229–2234.

    Article  CAS  Google Scholar 

  • Jing H, Takagi J, Liu JH, Lindgren S, Zhang RG, Joachimiak A et al. (2002). Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins. Structure 10: 1453–1464.

    Article  CAS  Google Scholar 

  • Kato GJ, Dang CV . (1992). Function of the c-Myc oncoprotein. FASEB J 6: 3065–3072.

    Article  CAS  Google Scholar 

  • Kwon BS, Chintamaneni C, Kozak CA, Copeland NG, Gilbert DJ, Jenkins N et al. (1991). A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12. Proc Natl Acad Sci USA 88: 9228–9232.

    Article  CAS  Google Scholar 

  • Levens DL . (2003). Reconstructing MYC. Genes Dev 17: 1071–1077.

    Article  CAS  Google Scholar 

  • Liu YN, Kang BB, Chen JH . (2004). Transcriptional regulation of human osteopontin promoter by C/EBPα and AML-1 in metastatic cancer cells. Oncogene 23: 278–288.

    Article  CAS  Google Scholar 

  • Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R et al. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378.

    Article  CAS  Google Scholar 

  • Menssen A, Hermeking H . (2002). Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 99: 6274–6279.

    Article  CAS  Google Scholar 

  • Mink S, Mutschler B, Weiskirchen R, Bister K, Klempnauer KH . (1996). A novel function for Myc: inhibition of C/EBP-dependent gene activation. Proc Natl Acad Sci USA 93: 6635–6640.

    Article  CAS  Google Scholar 

  • Mink S, Jaswal S, Burk O, Klempnauer KH . (1999). The v-Myb oncoprotein activates C/EBPβ expression by stimulating an autoregulatory loop at the C/EBPβ promoter. Biochim Biophys Acta 1447: 175–184.

    Article  CAS  Google Scholar 

  • Mochii M, Agata K, Eguchi G . (1991). Complete sequence and expression of a cDNA encoding a chicken 115-kDa melanosomal matrix protein. Pigment Cell Res 4: 41–47.

    Article  CAS  Google Scholar 

  • Nair SK, Burley SK . (2003). X-ray structures of Myc-Max and Mad-Max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. Cell 112: 193–205.

    Article  CAS  Google Scholar 

  • Neiman PE, Ruddell A, Jasoni C, Loring G., Thomas SJ, Brandvold KA et al. (2001). Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc Natl Acad Sci USA 98: 6378–6383.

    Article  CAS  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV . (1999). MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016.

    Article  CAS  Google Scholar 

  • Oberst C, Hartl M, Weiskirchen R, Bister K . (1999). Conditional cell transformation by doxycycline-controlled expression of the MC29 v-myc allele. Virology 253: 193–207.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A et al. (2006). Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol 26: 2373–2386.

    Article  CAS  Google Scholar 

  • Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB . (2004). Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4: 562–568.

    Article  CAS  Google Scholar 

  • Rich JN, Shi Q, Hjelmeland M, Cummings TJ, Kuan CT, Bigner DD et al. (2003). Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem 278: 15951–15957.

    Article  CAS  Google Scholar 

  • Secombe J, Pierce SB, Eisenman RN . (2004). Myc: A weapon of mass destruction. Cell 117: 153–156.

    Article  CAS  Google Scholar 

  • Theos AC, Truschel ST, Raposo G, Marks MS . (2005). The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res 18: 322–336.

    Article  CAS  Google Scholar 

  • Turque N, Denhez F, Martin P, Planque N, Bailly M, Bègue A et al. (1996). Characterization of a new melanocyte-specific gene (QNR-71) expressed in v-myc-transformed quail neuroretina. EMBO J 15: 3338–3350.

    Article  CAS  Google Scholar 

  • Wang GL, Timchenko NA . (2005). Dephosphorylated C/EBPα accelerates cell proliferation through sequestering retinoblastoma protein. Mol Cell Biol 25: 1325–1338.

    Article  CAS  Google Scholar 

  • Weterman MA, Ajubi N, van Dinter IM, Degen WG, van Muijen GN, Ruitter DJ et al. (1995). Nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60: 73–81.

    Article  CAS  Google Scholar 

  • Zhang XY, DeSalle LM, Patel JH, Capobianco AJ, Yu D, Thomas-Tikhonenko A et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc Natl Acad Sci USA 102: 13968–13973.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Doris Bratschun for expert technical assistance. This work was supported by Austrian Science Foundation Grants P17041 (to KB) and P18148 (to MH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Bister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, F., Hartl, M., Karagiannidis, A. et al. WS5, a direct target of oncogenic transcription factor Myc, is related to human melanoma glycoprotein genes and has oncogenic potential. Oncogene 26, 1769–1779 (2007). https://doi.org/10.1038/sj.onc.1209975

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209975

Keywords

This article is cited by

Search

Quick links