Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of potential mechanisms underlying genotype–phenotype correlations in multiple endocrine neoplasia type 2

Abstract

Distinct dominant activating mutations in the RET proto-oncogene are responsible for the development of multiple endocrine neoplasia type 2 (MEN 2). Concise examination of the mutated codons led to the detection of a striking genotype–phenotype correlation between the mutated codon and the MEN 2 phenotype in terms of onset and aggressiveness of the disease, suggesting that manifestation and clinical progression is conditioned by the type of mutation. To gain insight into the molecular basis for this genotype–phenotype correlation, we analysed the impact of common and rare mutations identified in MEN 2A (C609Y, C634R), MEN 2B (A883F, M918T) and familial medullary thyroid carcinoma (Y791F) patients on several aspects of cell transformation, including proliferation, apoptosis, anchorage-independent growth and signaling. We found that tumor cells arising from distinct extracellular or intracellular MEN 2 mutations clearly differ in their proliferation properties owing to the activation of different molecular pathways, but importantly, also in resistance to apoptosis. Whereas MEN 2A mutants resulted in accelerated cell proliferation, MEN 2B-RET mutants significantly enhanced suppression of apoptosis, which may account, at least partially, for some of the clinical differences in MEN 2 patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Airaksinen MS, Saarma M . (2002). Nat Rev Neurosci 3: 383–394.

  • Arighi E, Borrello MG, Sariola H . (2005). Cytokine Growth Factor Rev 16: 441–467.

  • Asai N, Iwashita T, Matsuyama M, Takahashi M . (1995). Mol Cell Biol 15: 1613–1619.

  • Asai N, Murakami H, Iwashita T, Takahashi M . (1996). J Biol Chem 271: 17644–17649.

  • Besset V, Scott RP, Ibanez CF . (2000). J Biol Chem 275: 39159–39166.

  • Bocciardi R, Mograbi B, Pasini B, Borrello MG, Pierotti MA, Bourget I et al. (1997). Oncogene 15: 2257–2265.

  • Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE et al. (1994). Proc Natl Acad Sci USA 91: 1579–1583.

  • Davis RJ . (2000). Cell 103: 239–252.

  • Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC et al. (1993). Hum Mol Genet 2: 851–856.

  • Drosten M, Hilken G, Bockmann M, Rodicker F, Mise N, Cranston AN et al. (2004). J Natl Cancer Inst 96: 1231–1239.

  • Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V . (1996). Development 122: 349–358.

  • Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L et al. (1994). Nature 367: 378–380.

  • Freche B, Guillaumot P, Charmetant J, Pelletier L, Luquain C, Christiansen D et al. (2005). J Biol Chem 280: 36584–36591.

  • Gimm O, Niederle BE, Weber T, Bockhorn M, Ukkat J, Brauckhoff M et al. (2002). Surgery 132: 952–959; discussion 959.

  • Hanahan D, Weinberg RA . (2000). Cell 100: 57–70.

  • Hansford JR, Mulligan LM . (2000). J Med Genet 37: 817–827.

  • Hess P, Pihan G, Sawyers CL, Flavell RA, Davis RJ . (2002). Nat Genet 32: 201–205.

  • Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y et al. (1994). Nature 367: 375–376.

  • Ichihara M, Murakumo Y, Takahashi M . (2004). Cancer Lett 204: 197–211.

  • Iwamoto T, Taniguchi M, Asai N, Ohkusu K, Nakashima I, Takahashi M . (1993). Oncogene 8: 1087–1091.

  • Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y et al. (2004). Mol Cell Biol 24: 8026–8036.

  • Kurokawa K, Kawai K, Hashimoto M, Ito Y, Takahashi M . (2003). J Intern Med 253: 627–633.

  • Le Hir H, Charlet-Berguerand N, Gimenez-Roqueplo A, Mannelli M, Plouin P, de Franciscis V et al. (2000). Oncology 58: 311–318.

  • Manie S, Santoro M, Fusco A, Billaud M . (2001). Trends Genet 17: 580–589.

  • Marshall GM, Peaston AE, Hocker JE, Smith SA, Hansford LM, Tobias V et al. (1997). Cancer Res 57: 5399–5405.

  • Marx SJ . (2005). Nat Rev Cancer 5: 367–375.

  • Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW et al. (2000). Science 287: 1489–1493.

  • Moroy T, Geisen C . (2004). Int J Biochem Cell Biol 36: 1424–1439.

  • Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E et al. (1993). Nature 363: 458–460.

  • Murakami H, Yamamura Y, Shimono Y, Kawai K, Kurokawa K, Takahashi M . (2002). J Biol Chem 277: 32781–32790.

  • Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T et al. (2005). Cancer Res 65: 1729–1737.

  • Reynolds L, Jones K, Winton DJ, Cranston A, Houghton C, Howard L et al. (2001). Oncogene 20: 3986–3994.

  • Salvatore D, Melillo RM, Monaco C, Visconti R, Fenzi G, Vecchio G et al. (2001). Cancer Res 61: 1426–1431.

  • Santoro M, Carlomagno F, Melillo RM, Fusco A . (2004). Cell Mol Life Sci 61: 2954–2964.

  • Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M et al. (1995). Science 267: 381–383.

  • Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V . (1994). Nature 367: 380–383.

  • Segouffin-Cariou C, Billaud M . (2000). J Biol Chem 275: 3568–3576.

  • Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F . (2000). EMBO J 19: 612–622.

  • Takahashi M . (2001). Cytokine Growth Factor Rev 12: 361–373.

  • Takahashi M, Asai N, Iwashita T, Murakami H, Ito S . (1998). J Intern Med 243: 509–513.

  • Thimmaiah KN, Easton JB, Germain GS, Morton CL, Kamath S, Buolamwini JK et al. (2005). J Biol Chem 280: 31924–31935.

  • Tsui-Pierchala BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson Jr EM . (2002). J Biol Chem 277: 34618–34625.

  • Vitale G, Caraglia M, Ciccarelli A, Lupoli G, Abbruzzese A, Tagliaferri P . (2001). Cancer 91: 1797–1808.

  • Vivanco I, Sawyers CL . (2002). Nat Rev Cancer 2: 489–501.

  • Watanabe T, Ichihara M, Hashimoto M, Shimono K, Shimoyama Y, Nagasaka T et al. (2002). Am J Pathol 161: 249–256.

  • Welcker M, Singer J, Loeb KR, Bloecher A, Gurien-West M, Clurman BE et al. (2003). Mol Cell 12: 381–392.

  • Yip L, Cote GJ, Shapiro SE, Ayers GD, Herzog CE, Sellin RV et al. (2003). Arch Surg 138: 409–416; discussion 416.

Download references

Acknowledgements

We thank Heike Bergmann for preparation of immunohistological sections. This work was supported by DFG Grant PU 188/3-3 (BMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M Pützer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miše, N., Drosten, M., Racek, T. et al. Evaluation of potential mechanisms underlying genotype–phenotype correlations in multiple endocrine neoplasia type 2. Oncogene 25, 6637–6647 (2006). https://doi.org/10.1038/sj.onc.1209669

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209669

Keywords

This article is cited by

Search

Quick links