Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The retinoblastoma gene is involved in multiple aspects of stem cell biology

Abstract

Genetic programs controlling self-renewal and multipotentiality of stem cells have overlapping pathways with cell cycle regulation. Components of cell cycle machinery can play a key role in regulating stem cell self-renewal, proliferation, differentiation and aging. Among the negative regulators of cell cycle progression, the RB family members play a prominent role in controlling several aspects of stem cell biology. Stem cells contribute to tissue homeostasis and must have molecular mechanisms that prevent senescence and hold ‘stemness’. RB can induce senescence-associated changes in gene expression and its activity is downregulated in stem cells to preserve self-renewal. Several reports evidenced that RB could play a role in lineage specification of several types of stem cells. RB has a role in myogenesis as well as in cardiogenesis. These effects are not only related to its role in suppressing E2F-responsive genes but also to its ability to modulate the activity of tissue-specific transcription factors. RB is also involved in adipogenesis through a strict control of lineage commitment and differentiation of adipocytes as well in determining the switch between brown and white adipocytes. Also, hematopoietic progenitor cells utilize the RB pathway to modulate cell commitment and differentiation. In this review, we will also discuss the role of the other two RB family members: Rb2/p130 and p107 showing that they have both specific and overlapping functions with RB gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Bergh G, Ehinger M, Olsson I, Jacobsen SE, Gullberg U . (1999). Blood 94: 1971–1978.

  • Campisi J . (2001). Trends Cell Biol 11: S27–S31.

  • Caputi M, Russo G, Esposito V, Mancini A, Giordano A . (2005). J Cell Physiol 205: 319–327.

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML et al. (1992). Nature 359: 328–330.

  • Classon M, Kennedy BK, Mulloy R, Harlow E . (2000). Proc Natl Acad Sci USA 97: 10826–10831.

  • Claudio PP, Howard CM, Baldi A, De Luca A, Fu Y, Condorelli G et al. (1994). Cancer Res 54: 5556–5560.

  • Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N et al. (1996). Genes Dev 10: 1633–1644.

  • Cole KA, Harmon AW, Harp JB, Patel YM . (2004). Am J Physiol Cell Physiol 286: C349–C354.

  • Dannenberg JH, van Rossum A, Schuijff L, te Riele H . (2000). Genes Dev 14: 3051–3064.

  • Edlund T, Jessell TM . (1999). Cell 96: 211–224.

  • Galderisi U, Cipollaro M, Giordano A . (2006). Cell Death Differ 13: 5–11.

  • Galderisi U, Jori FP, Giordano A . (2003). Oncogene 22: 5208–5219.

  • Guo J, Sheng G, Warner BW . (2005). J Biol Chem 280: 35992–35998.

  • Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA et al. (2004). Proc Natl Acad Sci USA 101: 4112–4117.

  • Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC . (1999). Cell 98: 859–869.

  • Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T . (1996). Mol Cell Biol 16: 2402–2407.

  • Hoshikawa Y, Mori A, Amimoto K, Iwabe K, Hatakeyama M . (1998). Proc Natl Acad Sci USA 95: 8574–8579.

  • Hurford Jr RK, Cobrinik D, Lee MH, Dyson N . (1997). Genes Dev 11: 1447–1463.

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . (1992). Nature 359: 295–300.

  • Jori FP, Galderisi U, Napolitano MA, Cipollaro M, Cascino A, Giordano A et al. (2006) (in press).

  • Jori FP, Melone MA, Napolitano MA, Cipollaro M, Cascino A, Giordano A et al. (2005). Cell Death Differ 12: 65–77.

  • Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Giordano A et al. (2004). J Cell Physiol 200: 201–212.

  • Kasten MM, Giordano A . (1998). Cell Death Differ 5: 132–140.

  • LeCouter JE, Kablar B, Whyte PF, Ying C, Rudnicki MA . (1998). Development 125: 4669–4679.

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K et al. (1992). Nature 359: 288–294.

  • Lee EY, Hu N, Yuan SS, Cox LA, Bradley A, Lee WH et al. (1994). Genes Dev 8: 2008–2021.

  • Lee MH, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N et al. (1996). Genes Dev 10: 1621–1632.

  • Li FQ, Coonrod A, Horwitz M . (2000). Mol Cell Biol 20: 5129–5139.

  • Lowell BB, Spiegelman BM . (2000). Nature 404: 652–660.

  • Morrison SJ, Shah NM, Anderson DJ . (1997). Cell 88: 287–298.

  • Mulligan G, Jacks T . (1998). Trends Genet 14: 223–229.

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Cell 113: 703–716.

  • Novitch BG, Mulligan GJ, Jacks T, Lassar AB . (1996). J Cell Biol 135: 441–456.

  • Paggi MG, Baldi A, Bonetto F, Giordano A . (1996). J Cell Biochem 62: 418–430.

  • Papadimou E, Menard C, Grey C, Puceat M . (2005). EMBO J 24: 1750–1761.

  • Pucci B, Kasten M, Giordano A . (2000). Neoplasia 2: 291–299.

  • Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM . (2000). Genes Dev 14: 1293–1307.

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Genes Dev 14: 3037–3050.

  • Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F . (2005). Mol Vis 11: 729–737.

  • Sherr CJ, Roberts JM . (1999). Genes Dev 13: 1501–1512.

  • Shivdasani RA, Orkin SH . (1996). Blood 87: 4025–4039.

  • Sparks RL, Seibel-Ross EI, Wier ML, Scott RE . (1986). Cancer Res 46: 5312–5319.

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J et al. (2002). Oncogene 21: 8320–8333.

  • Stiegler P, Kasten M, Giordano A . (1998). J Cell Biochem Suppl 30–31: 30–36.

  • Tenen DG, Hromas R, Licht JD, Zhang DE . (1997). Blood 90: 489–519.

  • Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T et al. (2004). J Cell Biol 166: 853–863.

  • Wang H, Scott RE . (1993). Cell Prolif 26: 55–66.

  • Watanabe Y, Watanabe T, Kitagawa M, Taya Y, Nakayama K, Motoyama N . (1999). Brain Res 842: 342–350.

  • White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S . (2005). Mol Biol Cell 16: 2018–2027.

  • Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H et al. (2005). Cell 123: 1337–1349.

  • Zheng L, Flesken-Nikitin A, Chen PL, Lee WH . (2002). Cancer Res 62: 2498–2502.

  • Ziebold U, Reza T, Caron A, Lees JA . (2001). Genes Dev 15: 386–391.

Download references

Acknowledgements

NIH grants and SBARRO Health Research Organization (AG). PRIN 2004 (UG). We thank Mrs MariaRosaria Cipollaro for administrative assistance and Dr Gianluca Abate for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Galderisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galderisi, U., Cipollaro, M. & Giordano, A. The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene 25, 5250–5256 (2006). https://doi.org/10.1038/sj.onc.1209736

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209736

Keywords

This article is cited by

Search

Quick links