Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein

Abstract

Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer in humans. The antiapoptotic viral E6 gene has been identified as a key factor for maintaining the viability of HPV-positive cancer cells. Although E6 has the potential to modulate many apoptosis regulators, the crucial apoptotic pathway blocked by endogenous E6 in cervical cancer cells remained unknown. Using RNA interference (RNAi), here, we show that targeted inhibition of E6 expression in cervical cancer cells leads to the transcriptional stimulation of the PUMA promoter, in a p53-dependent manner. This is linked to the activation and translocation of Bax to the mitochondrial membrane, cytochrome c release into the cytosol, and activation of caspase-3, in a PUMA-dependent manner. Moreover, inhibition of Bax expression by RNAi efficiently reverts the apoptotic phenotype, which results from inhibition of E6 expression. Thus, interference with the p53/PUMA/Bax cascade is crucial for the antiapoptotic function of the viral E6 oncogene in HPV-positive cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aguilar-Lemarroy A, Gariglio P, Whitaker NJ, Gariglio P, zur Hausen H, Krammer PH et al. (2002). Oncogene 21: 165–175.

  • Baldus SE, Schwarz E, Lohrey C, Zapatka M, Landsberg S, Hahn SA et al. (2005). Oncogene 24: 810–819.

  • Brummelkamp TR, Bernards R, Agami R . (2002). Science 296: 550–553.

  • Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F . (2000). Proc Natl Acad Sci USA 97: 6693–6697.

  • Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . (2003). Oncogene 22: 5938–5945.

  • Chen C, Okayama H . (1987). Mol Cell Biol 7: 2745–2752.

  • DeFilippis RA, Goodwin EC, Wu L, DiMaio D . (2003). J Virol 77: 1551–1563.

  • Desaintes C, Goyat S, Garbay S, Yaniv M, Thierry F . (1999). Oncogene 18: 4538–4545.

  • Evan GI, Vousden KH . (2001). Nature 411: 342–348.

  • Filippova M, Parkhurst L, Duerksen-Hughes PJ . (2004). J Biol Chem 279: 25729–25744.

  • Goodwin EC, Yang E, Lee CJ, Lee HW, DiMaio D, Hwang ES . (2000). Proc Natl Acad Sci USA 97: 10978–10983.

  • Gu J, Zhang L, Swisher SG, Liu J, Roth JA, Fang B . (2004). Oncogene 23: 1300–1307.

  • Hall AH, Alexander KA . (2003). J Virol 77: 6066–6069.

  • Hengstermann A, D'silva MA, Kuballa P, Butz K, Hoppe-Seyler F, Scheffner M . (2005). J Virol 79: 9296–9300.

  • Horner SM, DeFilippis RA, Manuelidis L, DiMaio D . (2004). J Virol 78: 4063–4073.

  • Hsu YT, Youle RJ . (1998). J Biol Chem 273: 10777–10783.

  • Kaeser MD, Iggo RD . (2002). Proc Natl Acad Sci USA 99: 95–100.

  • Kelley ML, Keiger KE, Lee CJ, Huibregtse JM . (2005). J Virol 79: 3737–3747.

  • Klingelhutz AJ, Foster SA, McDougall JK . (1996). Nature 380: 79–82.

  • Kong XT, Gao H, Stanbridge EJ . (2001). J Biol Chem 276: 32990–33000.

  • Liu J, Wei T, Kwang J . (2004). Virology 318: 169–182.

  • Magal SS, Jackman A, Ish-Shalom S, Botzer LE, Gonen P, Schlegel R et al. (2005). J Gen Virol 86: 611–621.

  • Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M et al. (2004). J Biol Chem 279: 8076–8083.

  • Miyashita T, Reed JC . (1995). Cell 80: 293–299.

  • Nakano K, Vousden KH . (2001). Mol Cell 7: 683–694.

  • Pan H, Griep AE . (1995). Genes Dev 9: 2157–2169.

  • Psyrri A, DeFilippis RA, Edwards AP, Yates KE, Manuelidis L, DiMaio D . (2004). Cancer Res 64: 3079–3086.

  • Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S . (1999). EMBO J 18: 2040–2048.

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). Cell 63: 1129–1136.

  • Stöppler H, Conrad Stöppler M, Johnson E, Simbulan-Rosenthal CM, Smulson ME, Iyer S et al. (1998). Oncogene 17: 1207–1214.

  • Thomas M, Banks L . (1998). Oncogene 17: 2943–2954.

  • Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM . (2000). EMBO J 19: 5762–5771.

  • Yu L, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . (2001). Mol Cell 7: 673–682.

  • Yuan H, Fu F, Zhuo J, Wang W, Nishitani J, An DS et al. (2005). Oncogene 24: 5069–5078.

  • Zhang HM, Yuan J, Cheung P, Chau D, Wong BW, MacManus BM et al. (2005). Mol Cell Biol 25: 6247–6258.

  • zur Hausen H . (2002). Nat Rev Cancer 2: 342–350.

Download references

Acknowledgements

We thank Claudia Lohrey for expert technical assistance and Dr Martin Scheffner for valuable discussion. We are grateful to Drs Reuven Agami, Eric Stanbridge and Bert Vogelstein for the generous gift of plasmids. This work was supported by the Wilhelm-Sander Stiftung (FH-S) and the Deutsche Krebshilfe (FH-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Hoppe-Seyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, M., Butz, K., Dymalla, S. et al. Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene 25, 4009–4015 (2006). https://doi.org/10.1038/sj.onc.1209429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209429

Keywords

This article is cited by

Search

Quick links