Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2′-deoxycytidine

Abstract

The deoxycytidine analog 5-aza-2′-deoxycitidine (5-aza-dC) is a potent chemotherapeutic agent effective against selective types of cancer. The molecular mechanism by which 5-aza-dC induces cancer cell death, however, is not fully understood. It has been accepted that the mechanism of toxicity is due to the covalent binding between the DNA methyltransferase (Dnmt) and 5-aza-dC-substituted DNA. In order to define which member of the Dnmt family plays a dominant role in the cytotoxicity, we examined the effect of 5-aza-dC on cell growth and apoptosis in various Dnmt null mutant embryonic stem (ES) cells. Of interest, Dnmt3a–Dnmt3b double null ES cells were highly resistant to 5-aza-dC when compared to wild type, Dnmt3a null, Dnmt3b null, or Dnmt1 null ES cells. The cellular sensitivity to 5-aza-dC correlated well with the expression status of Dnmt3 in both undifferentiated and differentiated ES cells. When exogenous Dnmt3a or Dnmt3b was expressed in double null ES cells, the sensitivity to 5-aza-dC was partially restored. These results suggest that the cytotoxic effect of 5-aza-dC may be mediated primarily through Dnmt3a and Dnmt3b de novo DNA methyltransferases. Further, the ability to form Dnmt-DNA adducts was similar in Dnmt1 and Dnmt3, and the expression level of Dnmt3 was not higher than that of Dnmt1 in ES cells. Therefore, Dnmt3-DNA adducts may be more effective for inducing apoptosis than Dnmt1-DNA adducts. These results imply a therapeutic potential of 5-aza-dC to cancers expressing Dnmt3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachman KE, Rountree MR and Baylin SB . (2001). J. Biol. Chem., 276, 32282–32287.

  • Baylin SB, Herman JG, Graff JR, Vertino PM and Issa JP . (1998). Adv. Cancer Res., 72, 141–196.

  • Beaulieu N, Morin S, Chute IC, Robert MF, Nguyen H and MacLeod AR . (2002). J. Biol. Chem., 277, 28176–28181.

  • Belinsky SA, Nikula KJ, Baylin SB and Issa JP . (1996). Proc. Natl. Acad. Sci. USA, 93, 4045–4050.

  • Bestor TH . (2000). Hum. Mol. Genet., 9, 2395–2402.

  • Chen T, Ueda Y, Dodge JE, Wang Z and Li E . (2003). Mol. Cell. Biol., 23, 5594–5605.

  • Chen T, Ueda Y, Xie S and Li E . (2002). J. Biol. Chem., 277, 38746–38754.

  • Christman JK . (2002). Oncogene, 21, 5483–5495.

  • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G and Li BF . (1997). Science, 277, 1996–2000.

  • Costello JF and Plass C . (2001). J. Med. Genet., 38, 285–303.

  • Eden A, Gaudet F, Waghmare A and Jaenisch R . (2003). Science, 300, 455.

  • el-Deiry WS, Nelkin BD, Celano P, Yen RW, Falco JP, Hamilton SR and Baylin SB . (1991). Proc. Natl. Acad. Sci. USA, 88, 3470–3474.

  • Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT and Davidson NE . (1997). J. Biol. Chem., 272, 32260–32266.

  • Gabbara S and Bhagwat AS . (1995). Biochem. J., 307 (Part 1), 87–92.

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H and Jaenisch R . (2003). Science, 300, 489–492.

  • Girault I, Tozlu S, Lidereau R and Bieche I . (2003). Clin. Cancer Res., 9, 4415–4422.

  • Goffin J and Eisenhauer E . (2002). Ann. Oncol., 13, 1699–1716.

  • Gorczyca W, Gong J, Ardelt B, Traganos F and Darzynkiewicz Z . (1993). Cancer Res., 53, 3186–3192.

  • Hamaguchi I, Woods NB, Panagopoulos I, Andersson E, Mikkola H, Fahlman C, Zufferey R, Carlsson L, Trono D and Karlsson S . (2000). J. Virol., 74, 10778–10784.

  • Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR and Baylin SB . (1993). J. Natl. Cancer Inst., 85, 1235–1240.

  • Iwakuma T, Cui Y and Chang LJ . (1999). Virology, 261, 120–132.

  • Jones PA and Laird PW . (1999). Nat. Genet., 21, 163–167.

  • Jones PA and Taylor SM . (1980). Cell, 20, 85–93.

  • Juttermann R, Li E and Jaenisch R . (1994). Proc. Natl. Acad. Sci. USA, 91, 11797–11801.

  • Kanai Y, Ushijima S, Kondo Y, Nakanishi Y and Hirohashi S . (2001). Int. J. Cancer, 91, 205–212.

  • Karpf AR, Moore BC, Ririe TO and Jones DA . (2001). Mol. Pharmacol., 59, 751–757.

  • Kizaki H, Ohnishi Y, Azuma Y, Mizuno Y and Ohsaka F . (1993). Immunopharmacology, 25, 19–27.

  • Laird PW and Jaenisch R . (1996). Annu. Rev. Genet., 30, 441–464.

  • Leonhardt H, Page AW, Weier HU and Bestor TH . (1992). Cell, 71, 865–873.

  • Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E and Xu Y . (2005). Nat. Cell Biol., 7, 165–171.

  • Liu K, Wang YF, Cantemir C and Muller MT . (2003). Mol. Cell. Biol., 23, 2709–2719.

  • Melki JR, Warnecke P, Vincent PC and Clark SJ . (1998). Leukemia, 12, 311–316.

  • Michalowsky LA and Jones PA . (1987). Mol. Cell. Biol., 7, 3076–3083.

  • Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y and Sasaki H . (2001). Blood, 97, 1172–1179.

  • Murakami T, Li X, Gong J, Bhatia U, Traganos F and Darzynkiewicz Z . (1995). Cancer Res., 55, 3093–3098.

  • Nieto M, Samper E, Fraga MF, Gonzalez de Buitrago G, Esteller M and Serrano M . (2004). Oncogene, 23, 735–743.

  • Okano M, Bell DW, Haber DA and Li E . (1999). Cell, 99, 247–257.

  • Okano M, Xie S and Li E . (1998). Nat. Genet., 19, 219–220.

  • Pfeifer A, Ikawa M, Dayn Y and Verma IM . (2002). Proc. Natl. Acad. Sci. USA, 99, 2140–2145.

  • Pradhan S, Bacolla A, Wells RD and Roberts RJ . (1999). J. Biol. Chem., 274, 33002–33010.

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA and Jones PA . (1999). Nucleic Acids Res., 27, 2291–2298.

  • Sabapathy K, Klemm M, Jaenisch R and Wagner EF . (1997). EMBO J., 16, 6217–6229.

  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H and Hirohashi S . (2001). Hepatology, 33, 561–568.

  • Santi DV, Norment A and Garrett CE . (1984). Proc. Natl. Acad. Sci. USA, 81, 6993–6997.

  • Santini V, Kantarjian HM and Issa JP . (2001). Ann. Intern. Med., 134, 573–586.

  • Schneider-Stock R, Diab-Asseff M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, Schonfeld P, Roessner A and Gali-Muhtasib H . (2005). J. Pharmacol. Exp. Ther., 312, 525–536.

  • Shivji KK, Kenny MK and Wood RD . (1992). Cell, 69, 367–374.

  • Soejima K, Fang W and Rollins BJ . (2003). Oncogene, 22, 4723–4733.

  • Suetake L, Shi L, Watanabe D, Nakamura M and Tajima S . (2001). Cell Struct. Funct., 26, 79–86.

  • Takagi H, Tajima S and Asano A . (1995). Eur. J. Biochem., 231, 282–291.

  • Trinh BN, Long TI, Nickel AE, Shibata D and Laird PW . (2002). Mol. Cell. Biol., 22, 2906–2917.

  • Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, Liskay RM and Kunkel TA . (1996). Cell, 87, 65–73.

  • Weisenberger DJ, Velicescu M, Cheng JC, Gonzales FA, Liang G and Jones PA . (2004). Mol. Cancer Res., 2, 62–72.

  • Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, Okumura K and Li E . (1999). Gene, 236, 87–95.

  • Zaiss AK, Son S and Chang LJ . (2002). J. Virol., 76, 7209–7219.

  • Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C and Otterson GA . (2004). J. Biol. Chem., 279, 15161–15166.

Download references

Acknowledgements

We thank Dr En Li for providing Dnmt null ES cells, Dr Shoji Tajima for anti-Dnmt1 antibody, and Dr Keith D Robertson and Dr Thomas C Rowe for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Terada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, M., Meacham, A., Hamazaki, T. et al. De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2′-deoxycytidine. Oncogene 24, 3091–3099 (2005). https://doi.org/10.1038/sj.onc.1208540

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208540

Keywords

This article is cited by

Search

Quick links