Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Retinoic acid stabilizes p27Kip1 in EBV-immortalized lymphoblastoid B cell lines through enhanced proteasome-dependent degradation of the p45Skp2 and Cks1 proteins

Abstract

Retinoic acid (RA) arrests the growth of EBV-immortalized lymphoblastoid B cell lines (LCLs) by upregulating the cyclin-dependent kinase inhibitor p27Kip1. Here, we show that in LCLs, RA inhibits ubiquitination and proteasome-dependent degradation of p27Kip1, a phenomenon that is associated with downregulation of Thr187 phosphorylation of the protein, whereas the phosphorylation on Ser10 is unaffected. Furthermore, we demonstrate that RA downregulates the expression of the p45Skp2 and Cks1 proteins, two essential components of the SCFSkp2 ubiquitin ligase complex that target p27Kip1 for degradation. Downregulation of p45Skp2 and Cks1 occurs before the onset of growth arrest and is due to enhanced proteasome-mediated proteolysis of these proteins. Moreover, overexpression of p45Skp2 in DG75 cells prevents p27Kip1 protein accumulation and promotes resistance to the antiproliferative effects of RA. Treatment with Leptomycin B (LMB) blocked the translocation of p27Kip1 to the cytoplasm and prevented its degradation, indicating that CRM1-dependent nuclear export is required for p27Kip1 degradation. The shuttle protein p38Jab1, however, does not accumulate in the nucleus upon LMB treatment, nor does it interact with p27Kip1. Conversely, p45Skp2 is associated with p27Kip1 both in the nucleus and in the cytoplasm, accumulating within the nuclei after exposure to LMB and co-localizing with the exportin CRM1, suggesting a possible involvement of p45Skp2 in CRM1-dependent nuclear export of p27Kip1. These results indicate that downregulation of p45Skp2 is a key element underlying RA-induced p27Kip1 stabilization in B cells, resulting in an impaired targeting of the protein to the ubiquitin–proteasome pathway and probably contributing to the nuclear accumulation of p27Kip1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Baldassarre G, Boccia A, Bruni P, Sandomenico C, Barone MV, Pepe S, Angrisano T, Belletti B, Motti ML, Fusco A and Viglietto G . (2000). Cell Growth Differ., 11, 517–526.

  • Bloom J and Pagano M . (2003). Semin. Cancer Biol., 13, 41–47.

  • Boyle JO, Langenfeld J, Lonardo F, Sekula D, Reczek P, Rusch V, Dawson MI and Dmitrovsky E . (1999). J. Natl. Cancer Inst., 91, 373–379.

  • Cariati R, Zancai P, Quaia M, Cutrona G, Giannini F, Rizzo S, Boiocchi M and Dolcetti R . (2000). Int. J. Cancer, 86, 375–384.

  • Carrano AC, Eytan E, Hershko A and Pagano M . (1999). Nat. Cell Biol., 1, 193–199.

  • Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, Palestro G, De Wolf-Peeters C, Chilosi M, Pagano M and Inghirami G . (2002). Am. J. Pathol., 160, 1457–1466.

  • Chomczynski P and Sacchi N . (1987). Anal. Biochem., 162, 156–159.

  • Delmas C, Aragou N, Poussard S, Cottin P, Darbon JM and Manenti S . (2003). J. Biol. Chem., 278, 12443–12451.

  • De Vos S, Krug U, Hofmann WK, Pinkus GS, Swerdlow SH, Wachsman W, Grogan TM, Said JW and Koeffler HP . (2003). Diagn. Mol. Pathol., 12, 35–43.

  • Dimberg A, Bahram F, Karlberg I, Larsson LG, Nilsson K and Oberg F . (2002). Blood, 99, 2199–2206.

  • Dow R, Hendley J, Pirkmaier A, Musgrove EA and Germain D . (2001). J. Biol. Chem., 276, 45945–45951.

  • Esposito V, Baldi A, De Luca A, Groger AM, Loda M, Giordano GG, Caputi M, Baldi F, Pagano M and Giordano A . (1997). Cancer Res., 57, 3381–3385.

  • Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M and Hershko A . (2001). Nat. Cell Biol., 3, 321–324.

  • Hannon GJ, Sun P, Carnero A, Xie LY, Maestro R, Conklin DS and Beach D . (1999). Science, 283, 1129–1130.

  • Hattori T, Kitagawa K, Uchida C, Oda T and Kitagawa M . (2003). Genes Cells, 8, 889–896.

  • Hsu SL, Hsu JW, Liu MC, Chen LY and Chang CD . (2000). Exp. Cell Res., 258, 322–331.

  • Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S and Yoshida M . (1998). Exp. Cell Res., 242, 540–547.

  • Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K and Nakayama KI . (2002). J. Biol. Chem., 277, 14355–14358.

  • Ishida N, Kitagawa M, Hatakeyama S and Nakayama K . (2000). J. Biol. Chem., 275, 25146–25154.

  • Langenfeld J, Kiyokawa H, Sekula D, Boyle J and Dmitrovsky E . (1997). Proc. Natl. Acad. Sci. USA, 94, 12070–12074.

  • Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G and Pagano M . (2001). Proc. Natl. Acad. Sci. USA, 98, 2515–2520.

  • Li Y, Lin B, Agadir A, Liu R, Dawson MI, Reed JC, Fontana JA, Bost F, Hobbs PD, Zheng Y, Chen GQ, Shroot B, Mercola D and Zhang XK . (1998). Mol. Cell. Biol., 18, 4719–4731.

  • Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL and Elenitoba-Johnson KS . (2002). Blood, 100, 2950–2956.

  • Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C and Krek W . (1998). EMBO J., 17, 368–383.

  • Liu M, Iavarone A and Freedman LP . (1996). J. Biol. Chem., 271, 31723–31728.

  • Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM and Pagano M . (1997). Nat. Med., 3, 231–234.

  • Michel JJ and Xiong Y . (1998). Cell Growth Differ., 9, 435–449.

  • Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A and Pagano M . (1999). Genes Dev., 13, 1181–1189.

  • Muller D, Bouchard C, Rudolph B, Steiner P, Stuckmann I, Saffrich R, Ansorge W, Huttner W and Eilers M . (1997). Oncogene, 15, 2561–2576.

  • Nakamura M, Matsuo T, Stauffer J, Neckers L and Thiele CJ . (2003). Cell. Death Differ., 10, 230–239.

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K and Hatakeyama S . (2000). EMBO J., 19, 2069–2081.

  • Ohta T, Michel JJ, Schottelius AJ and Xiong Y . (1999). Mol. Cell, 3, 535–541.

  • Pomponi F, Cariati R, Zancai P, De Paoli P, Rizzo S, Tedeschi RM, Pivetta B, De Vita S, Boiocchi M and Dolcetti R . (1996). Blood, 88, 3147–3159.

  • Reynisdottir I and Massague J . (1997). Genes Dev., 11, 492–503.

  • Richardson HE, Stueland CS, Thomas J, Russell P and Reed SI . (1990). Genes Dev., 4, 1332–1344.

  • Seger YR, Garcia-Cao M, Piccinin S, Cunsolo CL, Doglioni C, Blasco MA, Hannon GJ and Maestro R . (2002). Cancer Cell., 2, 401–413.

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM and Clurman BE . (1997). Genes Dev., 11, 1464–1478.

  • Slingerland J and Pagano M . (2000). J. Cell. Physiol., 183, 10–17.

  • Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ and Dmitrovsky E . (1999). J. Biol. Chem., 274, 22013–22018.

  • Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW and Reed SI . (2001). Mol. Cell, 7, 639–650.

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U and Krek W . (1999). Nat. Cell Biol., 1, 207–214.

  • Suzui M, Masuda M, Lim JT, Albanese C, Pestell RG and Weinstein IB . (2002). Cancer Res., 62, 3997–4006.

  • Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T, Yoshida M, Yoneda-Kato N and Kato JY . (2002). J. Biol. Chem., 277, 2302–2310.

  • Tomoda K, Kubota Y and Kato J . (1999). Nature, 398, 160–165.

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H and Zhang H . (1999). Curr. Biol., 9, 661–664.

  • Vlach J, Hennecke S and Amati B . (1997). EMBO J., 16, 5334–5344.

  • Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F and Krek W . (2000). EMBO J., 19, 5362–5375.

  • Wolff B, Sanglier JJ and Wang Y . (1997). Chem. Biol., 4, 139–147.

  • Zancai P, Cariati R, Rizzo S, Boiocchi M and Dolcetti R . (1998). Oncogene, 17, 1827–1836.

  • Zhang D, Vuocolo S, Masciullo V, Sava T, Giordano A, Soprano DR and Soprano KJ . (2001). Oncogene, 20, 7935–7944.

  • Zhang H, Kobayashi R, Galaktionov K and Beach D . (1995). Cell, 82, 915–925.

Download references

Acknowledgements

We thank Dr H Zhang for kindly providing the p27Kip1 cDNA cloned in the pcDNA3 vector and Mrs P Pistello for help with the manuscript. PZ and RC are recipients of fellowships from the Italian Foundation for Cancer Research (FIRC). This work was supported in part by grants from the European Community (FP5 contract QLK3-CT-2002-02029) (RD), from the Italian Association for Cancer Research (AIRC) (RD) and MIUR, Progetto Strategico ‘Oncologia’ (SP/4), Legge 449/97, No. 02.00268.ST97 (MB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dolcetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zancai, P., Dal Col, J., Piccinin, S. et al. Retinoic acid stabilizes p27Kip1 in EBV-immortalized lymphoblastoid B cell lines through enhanced proteasome-dependent degradation of the p45Skp2 and Cks1 proteins. Oncogene 24, 2483–2494 (2005). https://doi.org/10.1038/sj.onc.1208458

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208458

Keywords

This article is cited by

Search

Quick links