Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription

Abstract

The t(12;22) creates an MN1–TEL fusion gene leading to acute myeloid leukemia. The fusion partner TEL (ETV6) is a member of the ETS family of transcription factors. The nature of the other fusion partner, MN1, has not been investigated in detail until now. We recently described that MN1 activates the transcription activity of the moloney sarcoma virus long terminal repeat, indicating that this protein itself may act as a transcription factor. We show here that MN1 comprises multiple transcription activating domains. A search for a bound DNA sequence revealed that MN1 has affinity for retinoic acid responsive elements. A DR5 retinoic acid responsive element was observed in the LTR. The combination of MN1 and ligand-activated retinoic acid receptor leads to a synergistic induction of expression directed by the LTR. Cotransfection of MN1 with RAC3 or p300, known coactivators of retinoic acid receptors, leads to a further synergistic induction of transcription. In addition, the effect of MN1 can be inhibited by the wild-type adenovirus ElA protein that inhibits p300 function, but not by an E1A mutant lacking the p300-binding site. GAL4-MN1-mediated transcription can be enhanced directly by RAC3 and p300. Taken together, our results indicate that MN1 is a transcription coactivator rather than a sequence-specific transcription factor, and that it may stimulate RAR/RXR-mediated transcription through interaction with p160 and p300.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G and Ghysdael J . (1994). Mol. Cell. Biol., 14, 3230–3241.

  • Beverloo HB, Panagopoulos I, Isaksson M, van Wering E, van Drunen E, de Klein A, Johansson B and Slater R . (2001). Cancer Res., 61, 5374–5377.

  • Blackwell TK and Weintraub H . (1990). Science, 250, 1104–1110.

  • Buijs A, van Rompaey L, Molijn AC, Davis JN, Vertegaal AC, Potter MD, Adams C, van Baal S, Zwarthoff EC, Roussel MF and Grosveld, GC . (2000). Mol Cell. Biol., 20, 9281–9293.

  • Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E, Kearney L and Biondi A . (2001). Cancer Res., 61, 4666–4670.

  • Chakrabarti SR and Nucifora G . (1999). Biochem. Biophys. Res. Commun., 264, 871–877.

  • Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y and Evans RM . (1999). Cell, 96, 393–403.

  • den Bakker MA, Tascilar M, Riegman PH, Hekman AC, Boersma W, Janssen PJ, de Jong TA, Hendriks W, van der Kwast TH and Zwarthoff EC . (1995). Am. J. Pathol., 147, 1339–1349.

  • Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ and Stallcup MR . (1998). Mol. Endocrinol., 12, 302–313.

  • Dorsman JC, Hagmeyer BM, Veenstra J, Elfferich P, Nabben N, Zantema A and van der Eb AJ . (1995). J. Virol., 69, 2962–2967.

  • Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR and Hiebert SW . (1999). Mol. Cell. Biol., 19, 6566–6574.

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG and Lazar MA . (1998). Mol. Cell. Biol., 18, 7185–7191.

  • Glass CK, Holloway JM, Devary OV and Rosenfeld MG . (1988). Cell, 54, 313–323.

  • Golub TR, Barker GF, Lovett M and Gilliland DG . (1994). Cell, 77, 307–316.

  • Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON and Gilliland DG . (1996). Mol. Cell. Biol., 16, 4107–4116.

  • Goodman RH and Smolik S . (2000). Genes Dev., 14, 1553–1577.

  • Gossen M and Bujard, H . (1992). Proc. Natl. Acad. Sci. U.S.A., 89, 5547–5551.

  • Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y and Kedes L . (1999). Cell, 96, 405–413.

  • Hong H, Kohli K, Trivedi A, Johnson DL and Stallcup MR . (1996). Proc. Natl. Acad. Sci. U.S.A., 93, 4948–4952.

  • Lekanne Deprez RH, Riegman PH, Groen NA, Warringa UL, van Biezen NA, Molijn AC, Bootsma D, de Jong PJ, Menon AG, Kley NA, Seizinger BR and Zwarthoff EC . (1995). Oncogene, 10, 1521–1528.

  • Leo C and Chen JD . (2000). Gene, 245, 1–11.

  • Li H and Chen JD . (1998). J. Biol. Chem., 273, 5948–5954.

  • Lin RJ and Evans RM . (2000). Mol. Cell, 5, 821–830.

  • Lopez RG, Carron C, Oury C, Gardellin P, Bernard O and Ghysdael J . (1999). J. Biol. Chem., 274, 30132–30138.

  • Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES and Evans RM . (1991). Cell, 66, 555–561.

  • Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni L, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C and Pelicci PG . (2000). Mol. Cell, 5, 811–820.

  • Nakshatri H and Bhat-Nakshatri P . (1998). Nucleic Acids Res., 26, 2491–2499.

  • Rachez C, Suldan Z, Ward J, Chang CP, Burakov D, Erdjument-Bromage H, Tempst P and Freedman LP . (1998). Genes Dev., 12, 1787–1800.

  • Shao W, Rosenauer A, Mann K, Chang CP, Rachez C, Freedman LP and Miller WH . (2000). Blood, 96, 2233–2239.

  • Shemshedini L, Ji JW, Brou C, Chambon P and Gronemeyer H . (1992). J. Biol. Chem., 267, 1834–1839.

  • Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ and O'Malley BW . (1997). Recent Prog. Horm. Res., 52, 141–164; discussion 164–165.

  • Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, Chan GC, Pui CH, Grosveld G and Downing JR . (1995). Leukemia, 9, 1985–1989.

  • Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P and Gronemeyer H . (1998). Embo. J., 17, 507–519.

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F and Pandolfi PP . (1998). Science, 279, 1547–1551.

  • Warrell Jr RP, de The H, Wang ZY and Degos L . (1993). N. Engl. J. Med., 329, 177–189.

  • Xu Y, Klein-Hitpass L and Bagchi MK . (2000). Mol. Cell. Biol., 20, 2138–2146.

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH and Nakatani Y . (1996). Nature, 382, 319–324.

  • Zechel C, Shen XQ, Chen JY, Chen ZP, Chambon P and Gronemeyer H . (1994). Embo. J., 13, 1425–1433.

Download references

Acknowledgements

We thank Nicole Groen and Lydia van den Andel-Thijssen for their excellent technical assistance. We thank Drs D Chen, R Eckner, R Evans and JC Dorsman for permission to use RAC3, p300 and E1A expression constructs. This work was supported by Dutch Cancer Society grants EUR 94-653 and 98-1778, and in part by NCI Grant CA72996-04 and the American Lebanese Syrian Associated Charities (ALSAC) of St Jude Children's Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen C Zwarthoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wely, K., Molijn, A., Buijs, A. et al. The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription. Oncogene 22, 699–709 (2003). https://doi.org/10.1038/sj.onc.1206124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206124

Keywords

This article is cited by

Search

Quick links