Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect

Abstract

Evidence accumulated over the past two decades has indicated that exposure of cell populations to ionizing radiation results in significant biological effects occurring in both the irradiated and nonirradiated cells in the population. This phenomenon, termed the ‘bystander response’, has been shown to occur both in vitro and in vivo and has been postulated to impact both the estimation of risks of exposure to low doses/low fluences of ionizing radiation and radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism and gap-junction intercellular communication have been proposed to regulate the radiation-induced bystander effect. Our current knowledge of the biochemical and molecular events involved in the latter two processes is reviewed in this article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Abbreviations

GJIC:

gap-junction intercellular communication

ROS:

reactive oxygen species

SCE:

sister-chromatid exchanges

CHO:

Chinese hamster ovary

SOD:

superoxide dismutase

DPI:

diphenyliodonium

DMSO:

dimethyl sulfoxide

References

  • Adler V, Yin Z, Tew KD and Ronai Z . (1999). Oncogene, 18, 6104–6111.

  • Allen RG and Tresini M . (2000). Free Radic. Biol. Med., 28, 463–499.

  • Azzam EI, De Toledo SM, Gooding T and Little JB . (1998). Radiat. Res., 150, 497–504.

  • Azzam EI, de Toledo SM and Little JB . (2001). Proc. Natl. Acad. Sci. USA, 98, 473–478.

  • Azzam EI, de Toledo SM and Little JB . (2003). Cancer Res. (in press).

  • Azzam EI, De Toledo SM, Spitz DR and Little JB . (2002). Cancer Res., 62, 5436–5442.

  • Babior BM . (1999). Blood, 93, 1464–1476.

  • Barcellos-Hoff MH and Brooks AL . (2001). Radiat. Res., 156, 618–627.

  • Bedford JS and Mitchell JB . (1974). Br. J. Radiol., 47, 687–696.

  • Bevans CG, Kordel M, Rhee SK and Harris AL . (1998). J. Biol. Chem., 273, 2808–2816.

  • Bishayee A, Hill HZ, Stein D, Rao DV and Howell RW . (2001). Radiat. Res., 155, 335–344.

  • Bishayee A, Rao DV and Howell RW . (1999). Radiat. Res., 152, 88–97.

  • Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Davis BH, Corry PM and Lee YJ . (1999). Free Radic. Biol. Med., 26, 419–430.

  • Bruzzone R, White TW and Goodenough DA . (1996). BioEssays, 18, 709–718.

  • Burdon RH . (1996). Biochem. Soc. Trans., 24, 1028–1032.

  • Burkitt MJ and Wardman P . (2001). Biochem. Biophys. Res. Commun., 282, 329–333.

  • Chipman JK, Mally A and Edwards GO . (2003). Toxicol. Sci., 71, 146–153.

  • Chuaqui CA and Petkau A . (1987). Radiat. Phys. Chem., 30, 365–373.

  • Clutton SM, Townsend KMS, Walker C, Ansell JD and Wright EG . (1996). Carcinogenesis, 17, 1633–1639.

  • D'Angio CT and Finkelstein JN . (2000). Mol. Genet. Metab., 71, 371–380.

  • De Maio A, Vega VL and Contreras JE . (2002). J. Cell. Physiol., 191, 269–282.

  • Doble BW and Kardami E . (1995). Mol. Cell. Biochem., 143, 81–87.

  • Dowling-Warriner CV and Trosko JE . (2000). Neuroscience, 95, 859–868.

  • Echetebu CO, Ali M, Izban MG, MacKay L and Garfield RE . (1999). Mol. Hum. Reprod., 5, 757–766.

  • Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF and Willecke K . (1995). J. Cell Biol., 129, 805–817.

  • Emerit I, Arutyunyan R, Oganesian N, Levy A, Cernjavsky L, Sarkisian T, Pogossian A and Asrian K . (1995). Free Radic. Biol. Med., 18, 985–991.

  • Feinendegen LE . (2002). Hum. Exp. Toxicol., 21, 85–90.

  • Fernandez-Cobo M, Gingalewski C, Drujan D and De Maio A . (1999). Cytokine, 11, 216–224.

  • Finkel T . (2000). FEBS Lett., 476, 52–54.

  • Finkel T and Holbrook NJ . (2000). Nature, 408, 239–247.

  • Gabbita SP, Robinson KA, Stewart CA, Floyd RA and Hensley K . (2000). Arch. Biochem. Biophys., 376, 1–13.

  • Goldberg GS, Lampe PD and Nicholson BJ . (1999). Nat. Cell Biol., 1, 457–459.

  • Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A, Witte L and Fuks Z . (1991). Cancer Res., 51, 2552–2558.

  • Halliwell B and Gutteridge JMC . (1989). Free Radicals in Biology and Medicine, 2nd edn. Clarendon Press: Oxford.

    Google Scholar 

  • Herrlich P and Bohmer FD . (2000). Biochem. Pharmacol., 59, 35–41.

  • Hollowell Jr JG and Littlefield LG . (1968). Proc. Soc. Exp. Biol. Med., 129, 240–244.

  • Hosoi Y, Miyachi H, Matsumoto Y, Enomoto A, Nakagawa K, Suzuki N and Ono T . (2001). Int. J. Cancer, 96, 270–276.

  • Huie RE and Padmaja S . (1993). Free Radic. Res. Commun., 18, 195–199.

  • Huo L, Nagasawa H and Little JB . (2001). Radiat. Res., 156, 521–525.

  • Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE and Byrns RE . (1993). Proc. Natl. Acad. Sci. USA, 90, 8103–8107.

  • Iyer R and Lehnert BE . (2000). Cancer Res., 60, 1290–1298.

  • John SA, Kondo R, Wang SY, Goldhaber JI and Weiss JN . (1999). J. Biol. Chem., 274, 236–240.

  • Kamata H and Hirata H . (1999). Cell Signal, 11, 1–14.

  • Kasper M, Traub O, Reimann T, Bjermer L, Großmann H, Müller M and Wenzel KW . (1996). Histochem. Cell Biol., 106, 419–424.

  • Khan MA, Hill RP and Van Dyk J . (1998). Int. J. Radiat. Oncol. Biol. Phys., 40, 467–476.

  • Kojima T, Mochizuki C, Mitaka T and Mochizuki Y . (1997). Cell Struct. Funct., 22, 347–356.

  • Kumar NM and Gilula NB . (1996). Cell, 84, 381–388.

  • Lampe PD and Lau AF . (2000). Arch. Biochem. Biophys., 384, 205–215.

  • Lehnert BE and Goodwin EH . (1997). Cancer Res., 57, 2164–2171.

  • Liu K, Kasper M, Bierhaus A, Langer S, Muller M and Trott KR . (1997). Radiat. Res., 147, 437–441.

  • Lo CW . (1996). J. Bioenerg. Biomembr., 28, 379–385.

  • Lopez-Barneo J, Lopez-Lopez JR, Urena J and Gonzalez C . (1988). Science, 241, 580–582.

  • Lorimore SA, Coates PJ, Scobie GE, Milne G and Wright EG . (2001). Oncogene, 20, 7085–7095.

  • Lyng FM, Seymour CB and Mothersill C . (2000). Br. J. Cancer, 83, 1223–1230.

  • Lyng FM, Seymour CB and Mothersill C . (2001). Biochem. Soc. Trans., 29, 350–353.

  • Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T and Kano E . (2001). Radiat. Res., 155, 387–396.

  • Meister A and Anderson ME . (1983). Annu. Rev. Biochem., 52, 711–760.

  • Meplan C, Richard MJ and Hainaut P . (2000). Biochem. Pharmacol., 59, 25–33.

  • Morel F, Doussiere J and Vignais PV . (1991). Eur. J. Biochem., 201, 523–546.

  • Mothersill C, Stamato TD, Perez ML, Cummins R, Mooney R and Seymour C . (2000). Br. J. Cancer, 82, 1740–1746.

  • Musil LS and Goodenough DA . (1991). J. Cell Biol., 115, 1357–1374.

  • Nagasawa H, Cremesti A, Kolesnick R, Fuks Z and Little JB . (2002). Cancer Res., 62, 2531–2534.

  • Nagasawa H and Little JB . (1992). Cancer Res., 52, 6394–6396.

  • Narayanan PK, Goodwin EH and Lehnert BE . (1997). Cancer Res., 57, 3963–3971.

  • Narayanan PK, LaRue KEA, Goodwin EH and Lehnert BE . (1999). Radiat. Res., 152, 57–63.

  • Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, Kinoshita H, Masuda J, Hazama H, Sakamoto I and Kohno S . (1998). Gut, 43, 575–577.

  • Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF and Johnson RG . (2000). J. Cell Sci., 113 (Part 17), 3037–3049.

  • Petkau A . (1978). Photochem. Photobiol., 28, 765–774.

  • Pike LJ . (2003). J. Lipid Res., 44, 655–667.

  • Price BD and Calderwood SK . (1992). Cancer Res., 52, 3814–3817.

  • Prise KM, Belyakov OV, Folkard M and Micheal BD . (1998). Int. J. Radiat. Biol., 74, 793–798.

  • Rubanyi GM, Ho EH, Cantor EH, Lumma WC and Botelho LH . (1991). Biochem. Biophys. Res. Commun., 181, 1392–1397.

  • Schubert AL, Schubert W, Spray DC and Lisanti MP . (2002). Biochemistry, 41, 5754–5764.

  • Schulze-Osthoff K, Bauer M, Vogt M, Wesselborg S and Baeuerle PA . (1997). Oxidative Stress and Signal Transduction. Forman HJ, Cadenas E (eds). Chapman & Hall: New York, pp. 239–259.

    Book  Google Scholar 

  • Shao C, Furusawa Y, Aoki M, Matsumoto H and Ando K . (2002). Int. J. Radiat. Biol., 78, 837–844.

  • Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM and Ignarro LJ . (1993). Biochem. Biophys. Res. Commun., 191, 1301–1308.

  • Simon AM and Goodenough DA . (1998). Trends Cell Biol., 8, 477–483.

  • Spitz DR, Sim JE, Ridnour LA, Galoforo SS and Lee YJ . (2000). Ann. NY Acad. Sci., 899, 349–362.

  • Suchyna TM, Nitsche JM, Chilton M, Harris AL, Veenstra RD and Nicholson BJ . (1999). Biophys. J., 77, 2968–2987.

  • Tonon R and D'Andrea P . (2002). Biorheology, 39, 153–160.

  • Trosko JE and Inoue T . (1997). Stem Cells, 15 (Suppl. 2), 59–67.

  • Uchida A, Mizutani Y, Nagamuta M and Ikenaga M . (1989). Immunopharmacol. Immunotoxicol., 11, 507–519.

  • Vance MM and Wiley LM . (1999). Radiat. Res., 152, 544–551.

  • Veenstra RD . (1996). J. Bioenerg. Biomembr., 28, 327–337.

  • Weill D, Gay F, Tovey MG and Chouaib S . (1996). J. Interferon Cytokine Res., 16, 395–402.

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U and Sohl G . (2002). Biol. Chem., 383, 725–737.

  • Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, Cook J, Pacelli R, Liebmann J, Krishna M, Ford PC and Mitchell JB . (1996). Curr. Top. Cell Regul., 34, 159–187.

  • Wu LJ, Randers-Pehrson GR, Xu A, Waldren CA, Geard CR, Yu ZL and Hei TK . (1999). Proc. Natl. Acad. Sci. USA, 96, 4959–4964.

  • Xie QW, Kashiwabara Y and Nathan C . (1994). J. Biol. Chem., 269, 4705–4708.

  • Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ and Hei TK . (2000). Proc. Natl. Acad. Sci. USA, 97, 2099–2104.

  • Zhou HN, Suzuki M, Randers-Pehrson R, Chen G, Trosko J, Vannais D, Waldren CA, Hall EJ and Hei TK . (2001).

Download references

Acknowledgements

We are deeply grateful to Drs Douglas Spitz, Roger Howell, Andrew Harris, Ashok Hospattankar, Perumal Venkatachalam and Veronica Leautaud for helpful comments and discussions. Research Grants FG02-98ER62685 (JBL) and FG02-02ER63447 (EA) from the US Department of Energy, 1RO1-CA92262-01A1 from the National Institutes of Health and 02-1081-CCR-S0 from the New Jersey Commission on Cancer Research (EA) supported this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard I Azzam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzam, E., de Toledo, S. & Little, J. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 22, 7050–7057 (2003). https://doi.org/10.1038/sj.onc.1206961

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206961

Keywords

This article is cited by

Search

Quick links