Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Downregulation of epidermal growth factor receptor signaling by singlet oxygen through activation of caspase-3 and protein phosphatases

Abstract

Downregulation of survival signaling pathways contributes to the cytotoxicity of reactive oxygen species (ROS) and may underlie certain therapies for hyperproliferative diseases. We have investigated the role of singlet oxygen, an ROS formed by photosensitization, in the regulation of survival signaling via the epidermal growth factor receptor (EGFR). Exposure of human keratinocytes to singlet oxygen resulted in rapid loss of EGFR, which was not blocked by either inhibition of receptor internalization or by interrupting the major proteolytic pathways (proteasome, lysosome or calpain). However, pretreatment with a caspase-3 inhibitor, DEVD-FMK, inhibited EGFR degradation. Caspase-3 cleavage was detected as early as 5 min after singlet oxygen treatment, and recombinant active caspase-3 completely cleaved EGFR in a keratinocyte membrane fraction. The singlet oxygen-induced loss of EGFR was accompanied by dephosphorylation of EGFR as well as of Akt and extracellular signal-regulated kinase 1/2 (ERK)1/2. Singlet oxygen-induced protein dephosphorylation was not dependent on activation of caspase-3. In contrast, inhibition of protein phosphatases (PPs) with okadaic acid completely blocked dephosphorylation of EGFR, ERK1/2 and Akt as well as degradation of EGFR. These results indicate that the oxidative stress produced by singlet oxygen rapidly disrupts EGFR-mediated signaling by decreasing both the protein level and its phosphorylation. These responses depended on intertwined activation of caspase-3 and PPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

EGFR:

epidermal growth factor receptor

ERK:

extracellular signal-regulated kinase

OA:

okadaic acid

PP:

protein phosphatase

PTP:

protein tyrosine phosphatase

PUVA:

psoralen/UVA

RB:

Rose Bengal

ROS:

reactive oxygen species

References

  • Ahmad N, Kalka K and Mukhtar H . (2001). Oncogene, 20, 2314–2317.

  • An B, Jin JR, Lin P and Dou QP . (1996). FEBS Lett., 399, 158–162.

  • Authier F, Metioui M, Bell AW and Mort JS . (1999). J. Biol. Chem., 274, 33723–33731.

  • Bae SS, Choi JH, Oh YS, Perry DK, Ryu SH and Suh PG . (2001). FEBS Lett., 491, 16–20.

  • Baker A and Kanofsky JR . (1992). Photochem. Photobiol., 55, 523–528.

  • Bar-Sagi D, Suhan JP, McCormick F and Feramisco JR . (1988). J. Cell. Biol., 106, 1649–1658.

  • Boulougouris P and Elder J . (2001). Anticancer Res., 21, 2769–2775.

  • Buttle DJ, Murata M, Knight CG and Barrett AJ . (1992). Arch. Biochem. Biophys., 299, 377–380.

  • Cayla X, Goris J, Hermann J, Hendrix P, Ozon R and Merlevede W . (1990). Biochemistry, 29, 658–667.

  • Cayla X, Van Hoof C, Bosch M, Waelkens E, Vandekerckhove J, Peeters B, Merlevede W and Goris J . (1994). J. Biol. Chem., 269, 15668–15675.

  • Chalfant CE, Kishikawa K, Mumby MC, Kamibayashi C, Bielawska A and Hannun YA . (1999). J. Biol. Chem., 274, 20313–20317.

  • Davies PJ, Davies DR, Levitzki A, Maxfield FR, Milhaud P, Willingham MC and Pastan IH . (1980). Nature, 283, 162–167.

  • Denu JM and Tanner KG . (1998). Biochemistry, 37, 5633–5642.

  • Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP and Rheinwald JG . (2000). Mol. Cell. Biol., 20, 1436–1447.

  • Dou QP, An B and Will PL . (1995). Proc. Natl. Acad. Sci. USA, 92, 9019–9023.

  • Fladmark KE, Brustugun OT, Hovland R, Boe R, Gjertsen BT, Zhivotovsky B and Doskeland SO . (1999). Cell Death Differ., 6, 1099–1108.

  • Flint AJ, Tiganis T, Barford D and Tonks NK . (1997). Proc. Natl. Acad. Sci. USA, 94, 1680–1685.

  • Gregoriou M, Willis AC, Pearson MA and Crawford C . (1994). Eur. J. Biochem., 223, 455–464.

  • Grether-Beck S, Bonizzi G, Schmitt-Brenden H, Felsner I, Timmer A, Sies H, Johnson JP, Piette J and Krutmann J . (2000). EMBO J., 19, 5793–5800.

  • Hunter I, McGregor D and Robins SP . (2001). J. Bone Miner. Res., 16, 466–477.

  • Janssens V and Goris J . (2001). Biochem. J., 353, 417–439.

  • Kamata H, Shibukawa Y, Oka SI and Hirata H . (2000). Eur. J. Biochem., 267, 1933–1944.

  • Katoh S . (1994). Biol. Pharm. Bull., 17, 1003–1107.

  • Kessel D and Castelli M . (2001). Photochem. Photobiol., 74, 318–322.

  • Kidd VJ, Lahti JM and Teitz T . (2000). Semin. Cell Dev. Biol., 11, 191–201.

  • Kishikawa K, Chalfant CE, Perry DK, Bielawska A and Hannun YA . (1999). J. Biol. Chem., 274, 21335–21341.

  • Kolch W . (2000). Biochem. J., 351, 289–305.

  • Krueger JG, Krane JF, Carter DM and Gottlieb AB . (1990). J. Invest. Dermatol., 94, 135S–140S.

  • Laskin JD, Lee E, Laskin DL and Gallo MA . (1986). Proc. Natl. Acad. Sci. USA, 83, 8211–8215.

  • Law B and Rossie S . (1995). J. Biol. Chem., 270, 12808–12813.

  • Lawlor MA and Alessi DR . (2001). J. Cell. Sci., 114, 2903–2910.

  • Lee SR, Kwon KS, Kim SR and Rhee SG . (1998). J. Biol. Chem., 273, 15366–15372.

  • Li DW, Xiang H, Mao YW, Wang J, Fass U, Zhang XY and Xu C . (2001). Exp. Cell Res., 266, 279–291.

  • Lin CP, Lynch MC and Kochevar IE . (2000). Exp. Cell Res., 259, 351–359.

  • Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE and Madshus IH . (2002). J. Cell Biol., 156, 843–854.

  • MacKintosh C and MacKintosh RW . (1994). Trends Biochem. Sci., 19, 444–448.

  • Maziere C, Conte MA, Leborgne L, Levade T, Hornebeck W, Santus R and Maziere JC . (2001). Biochem. Biophys. Res. Commun., 281, 289–294.

  • Mendelsohn J and Baselga J . (2000). Oncogene, 19, 6550–6565.

  • Millward TA, Zolnierowicz S and Hemmings BA . (1999). Trends Biochem. Sci., 24, 186–191.

  • Morita A, Werfel T, Stege H, Ahrens C, Karmann K, Grewe M, Grether-Beck S, Ruzicka T, Kapp A, Klotz LO, Sies H and Krutmann J . (1997). J. Exp. Med., 186, 1763–1768.

  • Nicholson DW . (1999). Cell Death Differ., 6, 1028–1042.

  • Oleinick NL and Evans HH . (1998). Radiat. Res., 150, S146–S156.

  • Posmantur R, McGinnis K, Nadimpalli R, Gilbertsen RB and Wang KK . (1997). J. Neurochem., 68, 2328–2337.

  • Ravid T, Sweeney C, Gee P, Carraway III KL and Goldkorn T . (2002). J. Biol. Chem., 277, 31214–31219.

  • Rosette C and Karin M . (1996). Science, 274, 1194–1197.

  • Santoro MF, Annand RR, Robertson MM, Peng YW, Brady MJ, Mankovich JA, Hackett MC, Ghayur T, Walter G, Wong WW and Giegel DA . (1998). J. Biol. Chem., 273, 13119–13128.

  • Scheving LA, Jin WH, Chong KM, Gardner W and Cope FO . (1998). Am. J. Physiol., 274, C1363–C1372.

  • Schutze S . (1999). J. Biol. Chem., 274, 10203–10212.

  • Separovic D, Mann KJ and Oleinick NL . (1998). Photochem. Photobiol., 68, 101–109.

  • Silberman SR, Speth M, Nemani R, Ganapathi MK, Dombradi V, Paris H and Lee EY . (1984). J. Biol. Chem., 259, 2913–2922.

  • Song Q and Lavin MF . (1993). Biochem. Biophys. Res. Commun., 190, 47–55.

  • Spizz G and Blackshear PJ . (1997). J. Biol. Chem., 272, 23833–23842.

  • Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K and Huber O . (2001). J. Biol. Chem., 276, 4972–4980.

  • Vanderklish PW and Bahr BA . (2000). Int. J. Exp. Pathol., 81, 323–339.

  • van der Vliet A, Hristova M, Cross CE, Eiserich JP and Goldkorn T . (1998). J. Biol. Chem., 273, 31860–31866.

  • Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM and Hannun YA . (1994). J. Biol. Chem., 269, 19605–19609.

  • Yarden Y . (2001). Eur. J. Cancer, 37, S3–S8.

  • Yoshimori T, Yamamoto A, Moriyama Y, Futai M and Tashiro Y . (1991). J. Biol. Chem., 266, 17707–17712.

  • Zhuang S, Demirs JT and Kochevar IE . (2000). J. Biol. Chem., 275, 25939–25948.

  • Zhuang S, Lynch MC and Kochevar IE . (1999). Exp. Cell Res., 250, 203–212.

Download references

Acknowledgements

We thank Dr James G Rheinwald and the Harvard Skin Disease Research Center for providing normal human TERT keratinocytes. This work was supported by NIH Grant GM 30755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene E Kochevar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, S., Ouedraogo, G. & Kochevar, I. Downregulation of epidermal growth factor receptor signaling by singlet oxygen through activation of caspase-3 and protein phosphatases. Oncogene 22, 4413–4424 (2003). https://doi.org/10.1038/sj.onc.1206604

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206604

Keywords

This article is cited by

Search

Quick links