Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Mutant p53 and aberrant cytosine methylation cooperate to silence gene expression

Abstract

p53 is an important transcriptional regulator that is frequently mutated in cancer. Gene-profiling experiments of breast cancer cells infected with wt p53 revealed both MASPIN and desmocollin 3 (DSC3) to be p53-target genes, even though both genes are silenced in association with aberrant cytosine methylation of their promoters. Despite the transcriptional repression of these genes by aberrant DNA methylation, restoration of p53 resulted in the partial reactivation of both genes. This reactivation is a result of wt p53 binding to its consensus DNA-binding sites within the MASPIN and DSC3 promoters, stimulating histone acetylation, and enhancing chromatin accessibility of their promoters. Interestingly, wt p53 alone did not affect the methylation status of either promoter, suggesting that p53 itself can partially overcome the repressive barrier of DNA methylation. Pharmacologic inhibition of DNA methylation with 5-aza-2′-deoxycytidine in combination with restoration of wt p53 status resulted in a synergistic reactivation of these genes to near-normal levels. These results suggest that cancer treatments that target both genetic and epigenetic facets of gene regulation may be a useful strategy towards the therapeutic transcriptional reprogramming of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 7
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Antequera F, Boyes J and Bird A . (1990). Cell, 62, 503–514.

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD and Berger SL . (2001). Mol. Cell, 8, 1243–1254.

  • Bird AP and Wolffe AP . (1999). Cell, 99, 451–454.

  • Domann FE, Rice JC, Hendrix MJ and Futscher BW . (2000). Int. J. Cancer, 85, 805–810.

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B . (1993). Cell, 75, 817–825.

  • Espinosa JM and Emerson BM . (2001). Mol. Cell, 8, 57–69.

  • Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H and Domann FE . (2002). Nat. Genet., 31, 175–179.

  • Gu W, Shi XL and Roeder RG . (1997). Nature, 387, 819–823.

  • He TC, Zhou S, da Costa LT, Yu J, Kinzler KW and Vogelstein B . (1998). Proc. Natl. Acad. Sci. USA, 95, 2509–2514.

  • Hollstein M, Hergenhahn M, Yang Q, Bartsch H, Wang ZQ and Hainaut P . (1999). Mutat. Res., 431, 199–209.

  • Hollstein M, Sidransky D, Vogelstein B and Harris CC . (1991). Science, 253, 49–53.

  • Jones PA and Baylin SB . (2002). Nat. Rev. Genet., 3, 415–428.

  • Jones PA and Taylor SM . (1980). Cell, 20, 85–93.

  • Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N, Getz G, Domany E and Givol D . (2001). Oncogene, 20, 2225–2234.

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C and Vogelstein B . (1991). Science, 252, 1708–1711.

  • Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T, Smith PD, Jiang Y, Gooden GC, Trent JM and Meltzer PS . (1998). Cancer Res., 58, 5009–5013.

  • Klus GT, Rokaeus N, Bittner ML, Chen Y, Korz DM, Sukumar S, Schick A and Szallasi Z . (2001). Int. J. Oncol., 19, 169–174.

  • Lee D, Kim JW, Seo T, Hwang SG, Choi EJ and Choe J . (2002). J. Biol. Chem., 277, 22330–22337.

  • Levine AJ . (1997). Cell, 88, 323–331.

  • Litt MD, Simpson M, Recillas-Targa F, Prioleau MN and Felsenfeld G . (2001). EMBO J., 20, 2224–2235.

  • Maass N, Biallek M, Rosel F, Schem C, Ohike N, Zhang M, Jonat W and Nagasaki K . (2002). Biochem. Biophys. Res. Commun., 297, 125–128.

  • Maxwell SA and Davis GE . (2000). Proc. Natl. Acad. Sci. USA, 97, 13009–13014.

  • Meltzer P, Leibovitz A, Dalton W, Villar H, Kute T, Davis J, Nagle R and Trent J . (1991). Br. J. Cancer, 63, 727–735.

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A . (1998). Nature, 393, 386–389.

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D and Bird A . (1999). Nat. Genet., 23, 58–61.

  • Polyak K, Xia Y, Zweier JL, Kinzler KW and Vogelstein B . (1997). Nature, 389, 300–305.

  • Rice JC and Futscher BW . (2000). Nucleic Acids Res., 28, 3233–3239.

  • Schena M, Shalon D, Davis RW and Brown PO . (1995). Science, 270, 467–470.

  • Seftor RE, Seftor EA, Sheng S, Pemberton PA, Sager R and Hendrix MJ . (1998). Cancer Res., 58, 5681–5685.

  • Soussi T, Dehouche K and Beroud C . (2000). Hum. Mutat., 15, 105–113.

  • Streuli CH . (2002). Breast Cancer Res., 4, 137–140.

  • Taylor SM and Jones PA . (1979). Cell, 17, 771–779.

  • Thompson F, Emerson J, Dalton W, Yang JM, McGee D, Villar H, Knox S, Massey K, Weinstein R, Bhattacharyya A et al. (1993). Genes Chromosom. Cancer, 7, 185–193.

  • Trent J, Yang JM, Emerson J, Dalton W, McGee D, Massey K, Thompson F and Villar H . (1993). Genes Chromosom. Cancer, 7, 194–203.

  • Tselepis C, Chidgey M, North A and Garrod D . (1998). Proc. Natl. Acad. Sci. USA, 95, 8064–8069.

  • Vogelstein B, Lane D and Levine AJ . (2000). Nature, 408, 307–310.

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F and Wolffe AP . (1999). Nat. Genet., 23, 62–66.

  • Watts GS, Pieper RO, Costello JF, Peng YM, Dalton WS and Futscher BW . (1997). Mol. Cell. Biol., 17, 5612–5619.

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW and Vogelstein B . (1999). Proc. Natl. Acad. Sci. USA, 96, 14517–14522.

  • Zhang M, Shi Y, Magit D, Furth PA and Sager R . (2000a). Oncogene, 19, 6053–6058.

  • Zhang M, Volpert O, Shi YH and Bouck N . (2000b). Nat. Med., 6, 196–199.

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH and Levine AJ . (2000). Genes Dev., 14, 981–993.

  • Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E and Sager R . (1994). Science, 263, 526–529.

  • Zou Z, Gao C, Nagaich AK, Connell T, Saito S, Moul JW, Seth P, Appella E and Srivastava S . (2000). J. Biol. Chem., 275, 6051–6054.

Download references

Acknowledgements

We thank Bert Vogelstein for the control and wt p53 adenoviruses. We thank S Vaught, A Palazzo, M Fitzgerald, and the Arizona Cancer Microarray Core for technical assistance. NIH grants to BWF and to FED, as well as to the Arizona Cancer Center and the Gene Therapy Center at the University of Iowa supported this work. MO was supported by a Cancer Biology Training grant from the NIH, and RW received support from a Toxicology Training grant from the NIEHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard W Futscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshiro, M., Watts, G., Wozniak, R. et al. Mutant p53 and aberrant cytosine methylation cooperate to silence gene expression. Oncogene 22, 3624–3634 (2003). https://doi.org/10.1038/sj.onc.1206545

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206545

Keywords

This article is cited by

Search

Quick links