Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Human p14Arf: an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function

Abstract

The human Ink4a/Arf tumor suppressor locus encodes two distinct products: p16Ink4a which prevents phosphorylation and inactivation of the retinoblastoma protein and, p14Arf, a nucleolar protein which activates the function of the tumor suppressor p53 protein in the nucleoplasm in response to oncogenic stimulation through an as yet ill-defined mechanism. Here we show that the level of endogenous p14Arf and its balance between the nucleolus and the nucleoplasm in HeLa cells are exquisitely sensitive to changes in cell morphology and to short-lived perturbations in cell cycle and in nucleolar function such as those induced by the cyclin-dependent kinase inhibitor, roscovitine, and the casein kinase II and RNA synthesis inhibitor, DRB. Most remarkably, whereas p14Arf predominantly concentrates in the nucleolus of interphase cells and transiently disappears between metaphase and early G1 under normal growth conditions, it massively and reversibly accumulates in the nucleoplasm of postmitotic and S-phase cells upon short-term treatment with roscovitine and, at a lesser extent, DRB. In line with the fact that the nuclear level of p53 reaches a peak between mid-G1 and the G1/S border in p53-expressor cells which lack Arf expression, these results provide a clue that, in p53+/Arf+ cells, Arf proteins might serve both to speed and to amplify p53-mediated responses in conditions and cell cycle periods in which the mechanisms involved in p53 stabilization and activation are not fully operational. They further suggest that human endogenous p14Arf might activate p53 pathways in physiologic situations by acting inside the nucleoplasm, especially when normal cell cycle progression and nucleolar function are compromised.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

Cdk:

cyclin-dependent kinase

CKII:

casein kinase II

DRB:

5,6-dichloro-1-β-D-ribofuranosylbenzimidazole

BrdUrd:

5-bromodeoxyuridine

Dapi:

4′,6-diamidino-2-phenylindole

MEFs:

mouse embryo fibroblasts

NDFs:

nucleolus-derived foci

PNBs:

prenucleolar bodies

DMEM:

Dulbecco's modified Eagle's medium

IPTG:

isopropyl β-D-thiogalactopyranoside

FITC:

fluorescein isothiocyanate

TRITC:

tetramethyl rhodamine isothiocyanate

References

  • Agarwal ML, Taylor WR, Chernov MW, Chernova OB, Stark GR . 1998 J. Biol. Chem. 273: 1–4

  • Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH . 1998 Nature 395: 124–125

  • Bosselut R, Duvall JF, Gégonne A, Bailly M, Hémar A, Brady J, Ghysdael J . 1990 EMBO J. 9: 22–27

  • Cong F, Zou X, Hinrichs K, Calame K, Goff SP . 1999 Oncogene 18: 7731–7739

  • David-Pfeuty T, Chakrani F, Ory K, Nouvian-Dooghe Y . 1996 Cell Growth Diff. 7: 1211–1225

  • David-Pfeuty T . 1999 Oncogene 18: 7409–7422

  • David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D . 2001 Oncogene 20: 5951–5963

  • DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR . 1997 Proc. Natl. Acad. Sci. USA 94: 7245–7250

  • Della Valle V, Duro D, Bernard O, Larsen C-J . 1997 Oncogene 15: 2475–2481

  • de Stanchina E, McCurrach ME, Zindy F, Shieh S-Y, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW . 1998 Genes Dev. 12: 2434–2442

  • Dimri GP, Itahana K, Acosta M, Campisi J . 2000 Mol. Cell. Biol. 20: 273–285

  • Dundr M, Olson MOJ . 1998 Mol. Biol. Cell 9: 2407–2422

  • Dundr M, Misteli T, Olson MOJ . 2000 J. Cell. Biol. 150: 433–446

  • Duro D, Bernard O, Della Valle V, Berger R, Larsen C-J . 1995 Oncogene 11: 21–29

  • Eymin B, Karayan L, Séité P, Brambilla C, Bambrilla E, Larsen C-J, Gazzéri S . 2001 Oncogene 20: 1033–1041

  • Gautier T, Robert-Nicoud M, Guilly M-N, Hernandez-Verdun D . 1992 J. Cell. Sci. 102: 729–737

  • Giaccia AJ, Kastan MB . 1998 Genes Dev. 12: 2973–2983

  • Girard F, Srausfeld U, Fernandez A, Lamb N . 1991 Cell 67: 1169–1179

  • Goodwin EC, DiMaio D . 2000 Proc. Natl. Acad. Sci. USA 97: 12513–12518

  • Granick D . 1975 J. Cell. Biol. 65: 418–427

  • Haaf T, Ward DC . 1996 Exp. Cell. Res. 224: 163–173

  • Harbour JW, Dean DC . 2000 Genes Dev. 14: 2393–2409

  • Hartwell L . 1992 Cell 71: 543–546

  • Hartwell L, Weinert TA . 1989 Science 246: 629–634

  • Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC . 1994 Nucleic Acids Res. 22: 3552–3555

  • Honda R, Yasuda H . 1999 EMBO J. 18: 22–27

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . 1998 Proc. Natl. Acad. Sci. USA 95: 8292–8297

  • Karayan L, Riou J-F, Séité P, Migeon J, Cantereau A, Larsen C-J . 2001 Oncogene 20: 836–848

  • Khan SH, Wahl GM . 1998 Cancer Res. 58: 396–401

  • Khan SH, Moritsugu J, Wahl GM . 2000 Proc. Natl. Acad. Sci. USA 97: 3266–3271

  • Ko LJ, Prives C . 1996 Genes Dev. 10: 1054–1072

  • Llanos S, Clark PA, Rowe J, Peters G . 2001 Nat. Cell. Biol. 3: 445–452

  • Levine AJ . 1997 Cell 88: 323–331

  • Lin AW, Lowe SW . 2001 Proc. Natl. Acad. Sci. USA 98: 5025–5030

  • Lindström MS, Klangby U, Inoue R, Pisa P, Wiman KG, Asker CE . 2000 Exp. Cell. Res. 256: 400–410

  • Lohrum MAE, Ashcroft M, Kubbutat MHG, Vousden KH . 2000 Curr. Biol. 10: 539–542

  • Lundberg AS, Hahn WC, Gupta P, Weinberg RA . 2000 Curr. Opin. Cell. Biol. 12: 705–709

  • Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D . 1995 Cancer Res. 55: 2995–2997

  • Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros J-G, Moulinoux J-P . 1997 Eur. J. Biochem. 243: 527–536

  • Morgan DO . 1999 Nat. Cell. Biol. 1: 47–53

  • Nevins JR . 2000 Hum. Mol. Gen. 10: 699–703

  • O'Connor PM . 1997 Cancer Surveys 29: 151–181

  • Palmero I, Pantoja C, Serrano M . 1998 Nature 395: 125–126

  • Pardee AB . 1974 Proc. Natl. Acad. Sci. USA 71: 1286–1290

  • Pomerantz J, Shreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Carlo C, DePinho RA . 1998 Cell 92: 713–723

  • Prives C . 1998 Cell 95: 5–8

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ . 1995 Cell 83: 993–1000

  • Radfar A, Unnikrishnan I, Lee H-W, DePinho RA, Rosenberg N . 1998 Proc. Natl. Acad. Sci. USA 95: 13194–13199

  • Savino TM, Gébrane-Younès J, De Mey J, Sibarita J-B, Hernandez-Verdun D . 2001 J. Cell. Biol. 153: 1097–1110

  • Savino TM, Bastos R, Jansen E, Hernandez-Verdun D . 1999 J. Cell. Sci. 112: 1889–1900

  • Sharpless NE, DePinho RA . 1999 Curr. Opin. Gen. Dev. 9: 22–30

  • Sherr CJ . 1998 Genes Dev. 12: 2984–2991

  • Sherr CJ, Weber JD . 2000 Curr. Opin. Gen. Dev. 10: 94–99

  • Sirri V, Hernandez-Verdun D, Roussel P . 2002 J. Cell Biol. 156: 968–981

  • Sirri V, Roussel P, Hernandez-Verdun D . 2000 J. Cell. Biol. 148: 259–270

  • Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A . 1995 Cancer Res. 55: 2988–2994

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G . 1998 EMBO J. 17: 5001–5014

  • Takahashi K, Suzuki K . 1994 Oncogene 9: 183–188

  • Tao W, Levine AJ . 1999 Proc. Natl. Acad. Sci. USA 96: 6937–6941

  • Vidal A, Koff A . 2000 Gene 247: 1–15

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . 1999 Nat. Cell. Biol. 1: 20–26

  • Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ . 2000 Mol. Cell. Biol. 20: 2517–2528

  • Wilson GD, McNally NJ, Dunphy E, Kärcher H, Pfragner R . 1985 Cytometry 6: 641–647

  • Wyllie AH, Kerr JFR, Currie AR . 1980 Int. Rev. Cytol. 68: 251–306

  • Zhang Y, Xiong Y . 1999 Mol. Cell 3: 579–591

  • Zhang Y, Xiong Y, Yarbrough WG . 1998 Cell 92: 725–734

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF . 1998 Genes Dev. 12: 2424–2433

Download references

Acknowledgements

We are greatly indebted to Gordon Peters for his generosity in providing us with the 4c6/4 mouse monoclonal and JR14 rabbit polyclonal anti-p14Arf antibodies as well as with the NARF2 and NARF2/E6 cell lines and to Susana Llanos, for her valuable information and advices. We are thankful also to Tony Hunter for supplying the anti-cyclin A antiserum. Our acknowledgements extend to Frederic Coquelle for teaching us microscope imaging and to Dany Rouillard for her help with the flow cytometry experiments. The study was supported by the Centre National pour la Recherche Scientifique and the Curie Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse David-Pfeuty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David-Pfeuty, T., Nouvian-Dooghe, Y. Human p14Arf: an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function. Oncogene 21, 6779–6790 (2002). https://doi.org/10.1038/sj.onc.1205871

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205871

Keywords

This article is cited by

Search

Quick links