Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Caspase 9 is required for p53-dependent apoptosis and chemosensitivity in a human ovarian cancer cell line

Abstract

The p53 gene suppresses tumor cell growth by inducing cell cycle arrest or apoptosis. Loss of its apoptosis activity has been implicated not only in tumor development but also in chemoresistance. We previously reported that targeting p53 for degradation by the human HPV E6 gene in the ovarian cancer cell line PA1 leads to an increase in the chemoresistant phenotype. Here we investigate the relationship between loss of p53-dependent caspase activation and chemosensitivity. In PA1-neo cells with wild-type p53, the activation of caspases including caspases 9, 8, 7 and 3 and cleavage of PARP were detected following adriamycin or etoposide treatment, whereas no such changes were observed in PA1-E6 cells whose p53 is degraded, suggesting that loss of p53 impairs caspase activation. Importantly, we showed that loss of caspase activation in PA1-E6 cells correlates with increased cell survival. Moreover, PA1 cells overexpressing a dominant negative caspase 9 were found to have decreased caspase-dependent apoptosis, as compared with vector control cells. Furthermore, these dominant negative caspase 9 expressing cells were resistant to chemotherapeutic agent-induced killing. Our results suggest that caspase 9 may be an important target for anticancer drug development. Thus, identifying novel compounds that can activate caspase 9 may be a strategy for overcoming a defect in the p53 apoptosis pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J . 1996 Cell 87: 171

  • Attardi LD, Lowe SW, Brugarolas J, Jacks T . 1996 EMBO J. 15: 3693–3701

  • Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, Jacks T . 2000 Genes Dev. 14: 704–718

  • Blagosklonny MV . 2000 Leukemia 14: 1502–1508

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B . 1999 J. Clin. Invest. 104: 263–269

  • Caelle C, Helmberg A, Karin M . 1994 Nature 370: 220–223

  • Cryns V, Yuan J . 1998 Genes Dev. 12: 1551–1570

  • Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J, Yuan J, Fisher DE . 2000 J. Biol. Chem. 275: 38905–38911

  • Ding HF, McGill G, Rowan S, Schmaltz C, Shimamura A, Fisher DE . 1998 J. Biol. Chem. 273: 28378–28383

  • Fan S, Smith M, Rivet D, Duba D, Zhan Q, Kohn KW, Fornace AJJ, O'Connor PM . 1995 Cancer Res. 55: 1649–1654

  • Fearnhead HO, Rodriguez J, Govek EE, Guo W, Kobayashi R, Hannon G, Lazebnik YA . 1998 Proc. Natl. Acad. Sci. USA 95: 13664–13669

  • Gottlieb E, Oren M . 1998 EMBO J. 17: 3587–3596

  • Green DR . 1998 Cell 94: 695–698

  • Gu Y, Wu J, Faucheu C, Lalanne JL, Diu A, Livingston DJ, Su MS . 1995 EMBO J. 14: 1923–1931

  • Haupt Y, Rowan S, Shaulian E, Vousden K, Oren M . 1995 Genes Dev. 9: 2170–2183

  • Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM, Lorincz AT, Hedrick L, Cho KR . 1993 Proc. Natl. Acad. Sci. USA 90: 3988–3992

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . 1997 Cell 91: 479–489

  • Lin Y, Ma W, Benchimol S . 2000 Nat. Genet. 26: 122–127

  • Lotem J, Sachs L . 1993 Blood 82: 4092–1096

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T . 1994 Science 266: 807–810

  • Lowe SW, Ruley HE, Jacks T, Housman DE . 1993a Cell 74: 957–967

  • Lowe SW, Schmitt EM, Smith SW, Sborne BA, Jacks T . 1993b Nature 362: 847–849

  • Miyashita T, Harigai M, Hanada M, Reed JC . 1994a Cancer Res. 54: 3131–3135

  • Miyashita T, Krajewski S, Krajewski M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC . 1994b Oncogene 9: 1799–1805

  • Miyashita T, Reed JC . 1995 Cell 27: 293–299

  • Moroni MC, Hickman ES, Denchi EL, Caprara G, Colli E, Cecconi F, Muller H, Helin K . 2001 Nat. Cell Biol. 3: 552–558

  • Nakano K, Vousden KH . 2001 Mol. Cell 7: 683–694

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N . 2000a Science 288: 1053–1058

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y . 2000b Cell 102: 849–862

  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiware T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, Radinsky R . 1995 Mol. Cell. Biol. 15: 3032–3040

  • Perkins CL, Fang G, Kim CN, Bhalla KN . 2000 Cancer Res. 60: 1645–1653

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . 1997 Nature 389: 300–305

  • Sabbatini P, Lin J, Levine AJ, White E . 1995 Genes Dev. 9: 2184–2192

  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . 2000 J. Biol. Chem. 275: 7337–7342

  • Sherr CJ . 1998 Genes Dev. 12: 2984–2991

  • Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB . 1993 Cancer Res. 53: 4164–4168

  • Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW . 1999 Science 284: 156–159

  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW . 2001 Nature 409: 207–211

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES . 1998 Mol. Cell 1: 949–957

  • Sun SY, Yue P, Zhou J-Y, Wang Y, Kim HC, Lotan R, Wu GS . 2001 Biochem. Biophys. Res. Commun. 280: 788–797

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T . 1994 Cell 78: 703–711

  • Tong X, Howley PM . 1997 Proc. Natl. Acad. Sci. USA 94: 4412–4417

  • Velculescu VE, El-Deiry WS . 1996 Clin. Chem. 42: 858–868

  • Wu GS, Burns TF, McDonald ER, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, El-Deiry WS . 1997 Nature Genet. 17: 141–143

  • Wu GS, Burns TF, McDonald ER, Meng RD, Kao G, Muschel R, Yen T, El-Deiry WS . 1999 Oncogene 18: 6411–6418

  • Wu GS, El-Deiry WS . 1996a Nature Med. 2: 255–256

  • Wu GS, El-Deiry WS . 1996b Clin. Cancer Res. 2: 623–633

  • Wu GS, Saftig P, Peters C, El-Deiry WS . 1998 Oncogene 16: 2177–2183

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . 2001 Mol. Cell 7: 673–682

Download references

Acknowledgements

We thank Dr Bert Vogelstein (Johns Hopkins University, Baltimore, MD, USA) for HCT116 cells and Dr Emad Alnemri (Thomas Jefferson University, Philadelphia, PA, USA) for the pcDNA3-DN-caspase 9 expressing vector. We also thank Dr Stuart Ratner for his critical reading of the manuscript. This work was supported by a start-up fund from the Karmanos Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Sheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Ding, Z. Caspase 9 is required for p53-dependent apoptosis and chemosensitivity in a human ovarian cancer cell line. Oncogene 21, 1–8 (2002). https://doi.org/10.1038/sj.onc.1205020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205020

Keywords

This article is cited by

Search

Quick links