Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

FLRG, an activin-binding protein, is a new target of TGFβ transcription activation through Smad proteins

Abstract

The FLRG gene encodes a secreted glycoprotein that binds to activin and is highly homologous to follistatin, an activin ligand. We cloned the promoter region of the human FLRG gene, and defined the minimal region necessary for transcription activation in a reporter-system assay. We showed that the fragment between positions −130 and +6, which consists of multiple consensus Sp1-binding sites, is required for the constitutive expression of the FLRG gene. We demonstrate here that FLRG mRNA expression is rapidly induced by TGFβ or by transfection with Smad protein expression vectors in human HepG2 cells. We investigated the transcription-regulation mechanism of FLRG expression in HepG2 cells following treatment with TGFβ. By deletion and point-mutation analysis of the FLRG promoter, we identified a Smad-binding element involved in the TGFβ-inducible expression of the FLRG gene. Moreover, transactivation of the FLRG promoter by TGFβ was compromised by dominant-negative mutants of Smad3 and Smad4 proteins. In addition, gel electrophoresis mobility-shift assays demonstrated the specific interaction of Smad3 and Smad4 proteins with the Smad-binding element consensus motif found in the FLRG promoter. Taken together, our data imply that Smad proteins participate in the regulation of expression of FLRG, a new target of TGFβ transcription activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Brodin G, Ahgren A, ten Dijke P, Heldin CH, Heuchel R . 2000 J. Biol. Chem. 275: 29023–29030

  • Chen X, Rubock MJ, Whitman M . 1996a Nature 383: 691–696

  • Chen Y, Lebrun JJ, Vale W . 1996b Proc. Natl. Acad. Sci. USA 93: 12992–12997

  • Cook T, Gebelein B, Urrutia R . 1999 Ann. NY Acad. Sci. 880: 94–102

  • Denissova NG, Pouponnot C, Long J, He D, Liu F . 2000 Proc. Natl. Acad. Sci. USA 97: 6397–6402

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM . 1998 EMBO J. 17: 3091–3100

  • DePaolo LV . 1997 Proc. Soc. Exp. Biol. Med. 214: 328–339

  • Derynck R, Zhang Y, Feng XH . 1998 Cell 95: 737–740

  • Dybedal I, Jacobsen SE . 1995 Blood 86: 949–957

  • Feng XH, Lin X, Derynck R . 2000 EMBO J. 19: 5178–5193

  • Hayette S, Gadoux M, Martel S, Bertrand S, Tigaud I, Magaud JP, Rimokh R . 1998 Oncogene. 16: 2949–2954

  • Heldin CH, Miyazono K, ten Dijke P . 1997 Nature 390: 465–471

  • Hua X, Miller ZA, Wu G, Shi Y, Lodish HF . 1999 Proc. Natl. Acad. Sci. USA 96: 13130–13135

  • Johansson BM, Wiles MV . 1995 Mol. Cell. Biol. 15: 141–151

  • Jonk LJ, Itoh S, Heldin CH, ten Dijke P, Kruijer W . 1998 J. Biol. Chem. 273: 21145–21152

  • Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K . 1998 EMBO J. 17: 4056–4065

  • Kingsley DM . 1994 Genes Dev. 8: 133–146

  • Kitamura K, Aota S, Sakamoto R, Yoshikawa SI, Okazaki K . 2000 Blood 95: 3371–3379

  • Krystal G, Lam V, Dragowska W, Takahashi C, Appel J, Gontier A, Jenkins A, Lam H, Quon L, Lansdorp P . 1994 J. Exp. Med. 180: 851–860

  • Lagna G, Hata A, Hemmati-Brivanlou A, Massague J . 1996 Nature 383: 832–836

  • Maguer-Satta V, Bartholin L, Jeanpierre S, Gadoux M, Bertrand S, Martel S, Magaud J, Rimokh R . 2001 Exp. Hematol. 29: 301–308

  • Massague J, Wotton D . 2000 EMBO J. 19: 1745–1754

  • Moustakas A, Kardassis D . 1998 Proc. Natl. Acad. Sci. USA 95: 6733–6738

  • Nagarajan RP, Zhang J, Li W, Chen Y . 1999 J. Biol. Chem. 274: 33412–33418

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P . 1997 EMBO J. 16: 5353–5362

  • Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A . 2000 J. Biol. Chem. 275: 29244–29256

  • Phillips DJ, de Kretser DM . 1998 Front Neuroendocrinol 19: 287–322

  • Pierelli L, Marone M, Bonanno G, Mozzetti S, Rutella S, Morosetti R, Rumi C, Mancuso S, Leone G, Scambia G . 2000 Blood 95: 3001–3009

  • Shao L, Frigon Jr NL, Young AL, Yu AL, Mathews LS, Vaughan J, Vale W, Yu J . 1992 Blood 79: 773–781

  • Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, Eto Y . 1992 Proc. Natl. Acad. Sci. USA 89: 1553–1556

  • Song CZ, Siok TE, Gelehrter TD . 1998 J. Biol. Chem. 273: 29287–29290

  • Suske G . 1999 Gene 238: 291–300

  • ten Dijke P, Miyazono K, Heldin CH . 2000 Trends Biochem. Sci. 25: 64–70

  • Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H . 2000 J. Biol. Chem. 275: 40788–40796

  • Vindevoghel L, Kon A, Lechleider RJ, Uitto J, Roberts AB, Mauviel A . 1998 J. Biol. Chem. 273: 13053–13057

  • Wrana JL . 2000 Cell 100: 189–192

  • Xiong Y, Connolly T, Futcher B, Beach D . 1991 Cell 65: 691–699

  • Yamashita T, Takahashi S, Ogata E . 1992 Blood 79: 304–307

  • Ying SY, Zhang Z, Furst B, Batres Y, Huang G, Li G . 1997 Proc. Soc. Exp. Biol. Med. 214: 114–122

  • Yu J, Dolter KE . 1997 Cytokines Cell Mol. Ther. 3: 169–177

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE . 1998 Mol. Cell 1: 611–617

  • Zhang W, Ou J, Inagaki Y, Greenwel P, Ramirez F . 2000 J. Biol. Chem. 275: 39237–39245

  • Zhang Y, Feng X, We R, Derynck R . 1996 Nature 383: 168–172

  • Zhang YQ, Kanzaki M, Shibata H, Kojima I . 1997 Biochim. Biophys. Acta. 1354: 204–210

Download references

Acknowledgements

This study was supported by grants from INSERM, the Association pour la Recherche contre le Cancer, the Ligue contre le Cancer (Comités du Rhône et de la Saône et Loire). We would like to thank JM Gauthier for providing the pGL3-MLP plasmid, P ten Dijke for the mammalian expression vectors encoding the flag-tagged human Smad2, Smad3 and Smad4, R Derynck for the mammalian expression vectors encoding human dominant-negative Smad3 (Smad3ΔC) and Smad4 (Smad4ΔC), and A Mauviel for bacterial vectors encoding GST-Smad proteins. We would like to thank MJ N'Guyen for her technical assistance. L Bartholin held a doctoral fellowship from the Ligue contre le Cancer, comité de la Haute Savoie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Rimokh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartholin, L., Maguer-Satta, V., Hayette, S. et al. FLRG, an activin-binding protein, is a new target of TGFβ transcription activation through Smad proteins. Oncogene 20, 5409–5419 (2001). https://doi.org/10.1038/sj.onc.1204720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204720

Keywords

This article is cited by

Search

Quick links